# Astro- and Astroparticle Physics at the South Pole



Hermann Kolanoski Humboldt-Universität zu Berlin and DESY



#### for the IceCube Collaboration



ICRC, Aug 11-18, 2011

### **Cosmic Rays and Neutrinos**



ICRC, Aug 11-18, 2011

### Outline

Detector: IceCube, DeepCore, IceTop

Neutrino Point Sources: integrated, time dependent, Multi-Messenger, GRB, Follow-Up

 Diffuse Flux of Neutrinos: Muon Neutrinos, Cascades and All-Flavour,

Exotics: Dark Matter and Monopoles

Cosmic Rays: Anisotropy, Composition, ...

ICRC, Aug 11-18, 2011

### **IceCube Detector**



ICRC, Aug 11-18, 2011

### **Detection Methods**







ICRC, Aug 11-18, 2011





# DeepCore

8 dense plus the 12 standard strings in clear ice

(in IC79 equivalently 6 + 7 strings)

#### Energy threshold:

down to ~10 GeV (from ~ 1 TeV)

#### Extends physics:

- atm ν oscillations,
- low mass WIMPS
- SN/GRB physics

An early success: Observation of atmospheric neutrino-induced cascades in IceCube-DeepCore

| #324 | Observation of Atmospheric Neutrino-induced<br>Cascades in IceCube-DeepCore |
|------|-----------------------------------------------------------------------------|
| #329 | Atmospheric Neutrino Oscillations with DeepCore                             |
| #288 | Search for choked GRBs using IceCube's DeepCore                             |

ICRC, Aug 11-18, 2011

#### **Muon Neutrino Effective Area**





### **Point Source Search**



# Point Source Search in Skymap (IC40+59)

43339 up-going + 64230 down-going from 723 days



unbinned likelihood

$$L(n_s, \gamma) = \prod_{i=1}^{N} \left( \frac{n_s}{N} S_i + \left( 1 - \frac{n_s}{N} \right) B_i \right)$$

signal term contains angular and energy pdf

test statistics:

$$\lambda = \frac{L(\hat{n}_s, \hat{\gamma})}{L(n_s = 0)} \Rightarrow p - value$$

ICRC, Aug 11-18, 2011



### **Neutrino Point Source Upper Limits**



#### **Time Dependent Point Source Searches**



# Follow-Up Programs

IceCube sees always the full sky!

Trigger other instruments (IACTs, X-ray satellites, optical telescopes . . .)



#### Gamma Ray Bursts papers #764 Searches for neutrinos produced by $p+\gamma$ interactions by internal jet 10<sup>-8</sup> IC40: arXiv:1101.1448 $\mathbf{Sr}$ **ICECUBE-40** Waxman & Bahcall IC40 Guetta et al. ່ທ **ICECUBE-59** 2 IC4n IC59 Guetta et al. $\Phi_{\nu}(\mathrm{E}_{\nu}) \,\, [\mathrm{GeV \, cm}]$ 90% c.l. = $0.22 \times model$ COMBINED LIMIT IC40+59 Guetta et al C59+40 combined limit 10<sup>-9</sup> 8 events expected 0 events observed $\mathbf{E}_{\ell}^2$ Parameters: boost $10^{4}$ $10^{6}$ 10<sup>5</sup> 10'and time scale $E_{\nu}$ [GeV] #288 Search for choked GRBs using IceCube's DeepCore

### Search for a Diffuse Flux of Cosmic Neutrinos

- muon neutrino flux
- electron/tau neutrino flux (cascades)
- Extremely-high Energy Cosmic Neutrino Flux

#### **Background:**

- atmospheric neutrinos at low energies
- cosmic ray muon bundles at high energy
- Rejection: mostly energy dependence, harder spectrum e.g. E<sup>-2</sup>

#### Diffuse µ Neutrino Flux



papers #736

#833 (atm)

#### **Diffuse All-Flavour Neutrino Flux**

Cascades

- Access to **all-flavour** fluxes,
- better **energy resolution** than for  $\mu$  neutrinos
- IceCube starts seeing cascade candidates -but understanding of background has to be worked on



Constraints on the EHE Neutrino Flux (IC40)



possible improvements (e.g. IceTop veto)

papers #949

**#778** 

#773

limits are touching GZK predictions of "guaranteed" EHE neutrinos

# Exotics: Dark Matter, Monopoles ....



ICRC, Aug 11-18, 2011

### WIMP Annihilation in the Sun

Amanda+IC22+IC40 (2001-2008) for Sun below horizon

paper #327

see also for IC22: PRL 102 (2009) 201302

 $0.05 < \Omega_{\gamma} h^2 < 0.20$ MSSM Limits 10<sup>6</sup>  $\sigma_{SI} < \sigma_{SI}^{lim}$  CDMS(2010)+XENON100(2010) ■ IC/Amanda 2001-2008,  $W^+ W^-$ ,  $\tau^+ \tau^-$  for  $m_v < m_W$ Model dependent conversion IC/Amanda 2001-2008, bb 10<sup>5</sup> of  $\mu$  flux to WIMP properties: Muon flux from the Sun  $[km^{-2} y^{-1}]$ IC86 180 days Sensitivity,  $W^+ W^-$ ,  $\tau^+ \tau^-$  for  $m_{\nu} < m_W$ Super-K 2004  $\chi$ -proton cross section:  $10^{4}$ preliminary -  $\rho_{\gamma}$ , f(v)cosmo--  $\sigma_{ann}$  annihilation logy 10<sup>3</sup> -  $\sigma_{\gamma\rho}$   $\rightarrow$  accumulation in Sun - branching ratios 10<sup>2</sup> direct theory searches (SUSY, ...)  $10^{1}$  $10^{2}$ 10<sup>3</sup>  $10^{4}$ WIMP mass [GeV]

# Relativistic Monopole Search

Monopole flux limits assuming an isotropic flux at the detector



- O(1000) below bound from existence of galactic B-field (Parker)
- Limits seriously constraint GUT models

Event time duration~400µs

challenge for data acquisition

paper #734

### **Cosmic Rays**

IceCube with IceTop as a 3-dimensional cosmic ray detector

- atmospheric neutrino flux (all flavour)
- atmospheric muon flux
- Cosmic Ray anisotropy
- Cosmic Ray composition

# Cosmic Rays: atmospheric muon flux



#662 Seasonal variations of high energy cosmic ray muons observed by the IceCube Observatory as a probe of Kaon/pion ratio

ICRC, Aug 11-18, 2011

simulation ( $\pi$ , K, c, b, ...)

#### ICRC, Aug 11-18, 2011

#### H.Kolanoski - IceCube Highlights

#### Atmospheric Neutrinos in IC79-DeepCore paper #324

#### Results for 281 days (preliminary) Systematic Uncertainties NOT included



at 10-300 GeV

 $\rightarrow$  oscillation studies become possible (paper #329)

| $\begin{array}{c} C^{sig} = \nu_{\mu}^{NC} + \nu_{e}^{CC} + \nu_{e}^{NC} \\ C^{bg} = \nu_{\mu}^{CC} \end{array} $ | cascades         |
|-------------------------------------------------------------------------------------------------------------------|------------------|
| $N^{sig} = \nu_e^{CC} + \nu_e^{NC}$                                                                               |                  |
| $N^{bg} = \nu_{\mu}^{CC} + \nu_{\mu}^{NC} \qquad \Leftarrow$                                                      | − ν <sub>e</sub> |



# **Cosmic Ray Anisotropy**

#### Compared to Northern Sky



the orientation of the dipole moment does **not** correspond to the relative motion in the Galaxy (Compton-Getting effect)

#### Cosmic Ray Anisotropy vs Energy in IceCube-59



ICRC, Aug 11-18, 2011

#### **Multiple Scale CR Anisotropy**

papers #306





ICRC, Aug 11-18, 2011

30

#### IceTop – InIce Coincidences



#### Low energy transient rate variations from Sun, SN, GRB, ...

H.Kolanoski - IceCube Highlights



ICRC, Aug 11-18, 2011

Since the first Sun flare observation Dec 13, 2006: [ApJ Lett 689 (2008) L65]

> IceTop increased spectral sensitivity taking differential rates at multiple thresholds

IceCube is the largest SN detector and part of SNEWS network

- detection by rate increase of 5160 DOM with  $< noise >_{DOM} = 286$  Hz; uptime  $\approx 98\%$
- depending on distance sensitivity to details of SN development, star mass, ν-oscillation and hierarchy

# Future



Pingu-I 18 additional strings with about 1000 DOMs in the 30 MT DeepCore → Cherenkov imaging

| #0325 | First Step Towards A New Proton Decay Experiment In Ice                        |
|-------|--------------------------------------------------------------------------------|
| #1102 | The Radio Air Shower Test Array (RASTA) –<br>enhancing the IceCube observatory |
| #0316 | Status and recent results of the South Pole Acoustic Test Setup                |
| #1236 | IceCube Radiofrequency extension                                               |

# ICECUBE COLLABORATION



NAMES OF TAXABLE PARTY.

AND DESCRIPTION.

# Summary

- IceCube is complete and reached expected performance (or even better)
- Results from the partly completed detector (IC22,40,56,79) reached sensitivities which are becoming to seriously challenge models:
  - o point source limits all sky, time (in)dependent, candidate list,
  - GRB limits exclude models (W&B model)
  - WIMP limits extend to not else excluded parameter space
  - o Monopole limit well below "Parker Bound"
  - Diffuse: factor 4 below W&B bound; EHE: in the range of GZK predictions
- Improve sensitivity by multi-messenger methods
  - pre-selected candidate sources (single or stacking)
  - o transients/time dep.: flares, GRB, SN ...
  - follow-up program (optical, X-ray, γ-ray)
- ... not only limits:
  - $\circ$  atmospheric neutrino and muon spectrum, large p<sub>T</sub> muons
  - o cosmic ray anisotropy on various angular scales
  - CR composition: IceCube/IceTop has unique capabilities
  - heliosperic physics
- Future: exploit existing, improve and extend:
  - DeepCore: low energy extension, atm. Oscillations, low mass WIMPS
  - high energy extensions: radio, acoustic, ...
  - Low energy: Cherenkov imaging, proton decay, ...