The E166 Experiment: Undulator-Based Production of Polarized Positrons

Hermann Kolanoski (Humboldt-Universität Berlin) for the E166 Collaboration

ILC: - physics with polarised e⁺e⁻

- undulator source scheme for ILC

E166 – proof-of-principle of the undulator method

- undulator basics
- transmission polarimetry
- Geant4 upgrade with (de)polarisation

results & conclusions

SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment

Polarized e⁺-beams in addition to polarized e⁻-beams offer*:

Example: SUSY physics

Separation of selectron pairs

$$e^+e^- \rightarrow \widetilde{e}^+_{R,L} \ \widetilde{e}^-_{L,R}$$

- Higher effective polarization
- Reduction of background

. . . .

- Selective enhancement of processes
- Access to non-SM couplings
- New physics, e.g. extra dimensions

*G. A. Moortgat-Pick et al.: "The Role of polarized positrons and electrons in revealing fundamental interactions at the linear collider". Phys. Rept. 460:131-243, 2008. (e-Print: hep-ph/0507011SLAC-PUB-11087, CERN-PH-TH-2005-036)

Undulator Source for ILC

٠

٠

•

Undulator Source Scheme for ILC

E166 – proof-of-principle demonstration of the undulator method

- utilizing 50 GeV electron final focus test beam (FFTB) at SLAC
- photons are converted to positrons in thin W-target
- measurement of photon and positron polarization by Compton transmission polarimetry

Undulator Basics

	E166	ILC(RDR)
electron beam energy (GeV)	46.6	150
field (T)	0.71	0.86
period (mm)	2.54	11.5
K value	0.17	0.92
photon energy <i>E</i> ₁ (MeV)	7.9	10.0
beam aperture (mm)	0.89	5.85
active length (m)	1	147
<i>M</i> = no. of periods	394	12800

SPIN2008 - Oct. 6-11, 2008

Undulator Basics

1st harmonic (dominating) expressions:

Spectrum:	Angular Distribution:	Polarization:
$\frac{dN_{\gamma}}{ds} = 2\pi\alpha M \frac{K^2}{1+K^2} \left(1-2s+2s^2\right)$ $s = E_1/E$	$\theta = \frac{1}{\gamma} \sqrt{(1+K^2) \frac{1-s}{s}}$	$P_{\gamma} = \frac{2s - 1}{1 - 2s + 2s^2}$

E166 Photon Yield: $N_{\gamma} = \int_0^1 \frac{dN_{\gamma}}{ds} ds = 0.359 =$ no. of photons per beam electron

SPIN2008 - Oct. 6-11, 2008

The E166 Experiment at SLAC FFTB

SLAC FFTB:

Final Focus Test Beam

- ▶ beam energy $E_{\text{beam}} = 46.6 \, GeV$
- ▶ electrons/bunch $n_e = 0.5 \cdot 10^{10}$
- \blacktriangleright beam size $\sigma = 40 \, \mu m \, \sigma_z$ = 50-500 μm
- rep. rate 10Hz

2004/2005 \rightarrow setup and checkout2005 \rightarrow 4 weeks of data taking

E166 experimental setup

DM:	electron beam dump magnets
T1:	$\gamma \rightarrow e^+$ prod. target (0.2 X ₀ W)
T2:	$e^+ \rightarrow \gamma$ reconv. target (0.5 X ₀ W)
P1:	e ⁺ flux monitor (Silicon)
Csl:	Csl calorimeter
SL:	solenoid lens
J:	movable jaws

A1, A2:aerogel detectorsS1, S2:silicon detectorsGCAL:Si/W-calorimeter	C1 – C4:	photon collimation
S1, S2:silicon detectorsGCAL:Si/W-calorimeter	A1, A2:	aerogel detectors
GCAL: Si/W-calorimeter	S1, S2:	silicon detectors
	GCAL:	Si/W-calorimeter

Undulator Operation

SPIN2008 - Oct. 6-11, 2008

E166 photo gallery

SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment

Compton Transmission Polarimetry for Low-Energy Photons

relies on spin dependence of Compton effect in magnetized iron:

Compton Crosssection
$$\sigma = \sigma_0 + P_\gamma P^{\rm Fe} \sigma_p$$

Transmission $T^{\pm}(L) = e^{-n^{\operatorname{Fe}}L\sigma} = e^{-n^{\operatorname{Fe}}L\sigma_0} e^{\pm n^{\operatorname{Fe}}LP^{\operatorname{Fe}}P_{\gamma}\sigma_p}$

$$\delta(L) = \frac{T^+(L) - T^-(L)}{T^+(L) + T^-(L)} \approx n^{\text{Fe}} L P^{\text{Fe}} P_\gamma \sigma_p$$

Analysing power

Asymmetry

$$A_{\gamma}(L) \equiv \frac{\delta(L)}{P^{\rm Fe}P_{\gamma}} \approx n^{\rm Fe}L\,\sigma_p$$

Photon polarisation

$$P_{\gamma} = \frac{\delta}{P^{\text{Fe}}A}$$

SPIN2008 - Oct. 6-11, 2008 Herm

Positron Polarimetry

- (a) transfer e⁺ polarization to photons via brems/annihilation processes ("reconversions")
- (b) infer e⁺ polarization from photon polar. by transmission polarimetry

(c) calculate analysing power from detailed simulation of spin dependent processes

(new Geant4 implementations)

SPIN2008 - Oct. 6-11, 2008

Analyzer Magnets

electron polarization of the iron:

$$P_e = 2 \cdot \frac{g' - 1}{g'} \cdot \frac{M}{n \,\mu_B}$$

M = ((Β-Β₀)/ μ ₀	=	magnetization

- n = electron density
- μ_B = Bohr magneton
- g' = magneto-mechanical factor

Photon Analyzer: Positron Analyzer: active volume $50 \text{ mm } \varnothing \times 150 \text{ mm long}$ $50 \text{ mm } \varnothing \times 75 \text{ mm long}$

 $P_e \approx 0.07$ $\Delta P_e / P_e < 0.05$ (aim of experiment)

SPIN2008 - Oct. 6-11, 2008

Analyzer Magnet Installation

SPIN2008 - Oct. 6-11, 2008

GEANT4 Upgrade for Polarisation Dependent EM Processes

Photon Asymmetries

Positron Analysis

Energy Deposition in Csl crystals

- good signal/background separation in central crystal
- use only central crystal for final results
- outer crystals as cross check and simulation scrutiny

SPIN2008 - Oct. 6-11, 2008

Analysis of positron asymmetries

$$S_{CSI} = \frac{1}{N_{on}N_{off}} \sum_{i=1}^{N_{off}} \sum_{j=1}^{M_{off}} \frac{E_{CSL,i}^{on} - E_{CSL,j}^{off}}{P_{1i}^{on} - P_{1j}^{off}} \frac{I_{f}^{on}}{I_{j}^{off}},$$

$$J = \frac{1}{N_{on}N_{off}} \sum_{i=1}^{N_{off}} \sum_{j=1}^{M_{off}} \frac{P_{i}^{on}}{P_{1i}^{on} - P_{1j}^{off}} \frac{I_{f}^{on}}{I_{j}^{off}},$$

$$J = \frac{1}{P_{1}^{off}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{on}}{P_{i}^{off}} \frac{I_{i}^{on}}{I_{j}^{off}},$$

$$I = \frac{1}{P_{1}^{off}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{on}}{P_{i}^{off}} \sum_{j=1}^{M_{off}} \frac{P_{i}^{on}}{P_{i}^{off}},$$

$$I = \frac{1}{P_{1}^{off}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{on}}{P_{i}^{off}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{on}}{P_{i}^{off}},$$

$$I = \frac{1}{P_{1}^{off}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{on}}{P_{i}^{off}} \sum_{j=1}^{M_{off}} \frac{P_{i}^{on}}{P_{i}^{off}},$$

$$I = \frac{1}{P_{1}^{off}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{on}}{P_{i}^{off}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{on}}{P_{i}^{off}},$$

$$I = \frac{1}{P_{1}^{off}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{on}}{P_{i}^{off}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{on}}{P_{i}^{off}},$$

$$I = \frac{1}{P_{1}^{off}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{on}}{P_{i}^{off}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{on}}{P_{i}^{ooff}},$$

$$I = \frac{1}{P_{1}^{off}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{ooff}}{P_{i}^{ooff}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{ooff}}{P_{i}^{ooff}}},$$

$$I = \frac{1}{P_{1}^{ooff}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{ooff}}{P_{i}^{ooff}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{ooff}}{P_{i}^{ooff}}},$$

$$I = \frac{1}{P_{1}^{ooff}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{ooff}}{P_{i}^{ooff}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{ooff}}{P_{i}^{ooff}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{ooff}}{P_{i}^{ooff}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{ooff}}{P_{i}^{ooff}} \sum_{i=1}^{M_{off}} \frac{P_{i}^{ooff}}{P_{i}^{oof$$

SPIN2008 - Oct. 6-11, 2008

positron asymmetries

SPIN2008 - Oct. 6-11, 2008

Results

SPIN2008 - Oct. 6-11, 2008

Summary and Conclusions

- successful demonstration of the undulator method
- undulator functioned as predicted
- confirmed expected $\gamma \rightarrow e + spin-transfer$ mechanism
- successful polarimetry of low-energy γ and e⁺
- implementation of polarisation dependence in Geant4
- measured high positron polarization ≈ 85% max.

SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment

Published in Physics Review Letters:

PRL 100, 210801 (2008)

PHYSICAL REVIEW LETTERS

week ending 30 MAY 2008

Observation of Polarized Positrons from an Undulator-Based Source

G. Alexander,¹ J. Barley,² Y. Batygin,³ S. Berridge,⁴ V. Bharadwaj,³ G. Bower,³ W. Bugg,⁴ F.-J. Decker,³ R. Dollan,⁵ Y. Efremenko,⁴ V. Gharibyan,^{6,7} C. Hast,³ R. Iverson,³ H. Kolanoski,⁵ J. Kovermann,⁸ K. Laihem,⁹ T. Lohse,⁵ K. T. McDonald,¹⁰ A. A. Mikhailichenko,² G. A. Moortgat-Pick,¹¹ P. Pahl,⁶ R. Pitthan,³ R. Pöschl,⁶ E. Reinherz-Aronis,¹ S. Riemann,⁹ A. Schälicke,⁹ K. P. Schüler,⁶ T. Schweizer,⁵ D. Scott,¹² J. C. Sheppard,³ A. Stahl,⁸ Z. M. Szalata,³ D. Walz,³ and A. W. Weidemann³ ¹Tel-Aviv University, Tel Aviv 69978, Israel ²Cornell University, Ithaca, New York 14853, USA ³SLAC, Menlo Park, California 94025, USA ⁴University of Tennessee, Knoxville, Tennessee 37996, USA ⁵Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany ⁶DESY, D-22607 Hamburg, Germany ⁷YerPhI, Yerevan 375036, Armenia ⁸*RWTH Aachen, D-52056 Aachen, Germany* ⁹DESY, D-15738 Zeuthen, Germany ¹⁰Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA ¹¹University of Durham, Durham, DH1 3LE, United Kingdom ¹²STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, United Kingdom (Received 8 March 2008; published 29 May 2008)

An experiment (E166) at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme in which a multi-GeV electron beam passed through a helical undulator to generate multi-MeV, circularly polarized photons which were then converted in a thin target to produce positrons (and electrons) with longitudinal polarization above 80% at 6 MeV. The results are in agreement with Geant4 simulations that include the dominant polarization-dependent interactions of electrons, positrons and photons in matter.

More detailed description of the experiment in a NIM paper under preparation

SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment