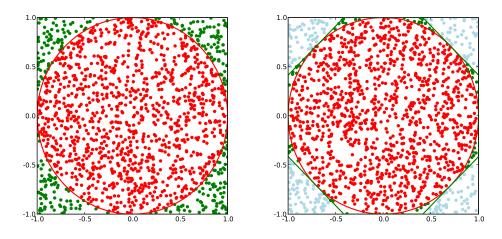
Übung zur Vorlesung "Statistische Methoden der Datenanalyse" H. Kolanoski, A. Schälicke – SS 2008

Übung 3


3.1 Bestimmung von Pi – Fortsetzung

In Aufgabe 2.2 wurde die Zahl π mit der Hit-or-Miss-Integrationsmethode abgeschätzt.

a) Verwenden Sie die Eigenschaften der Binomialverteilung um auf die erwartete Abhängigkeit des Fehlers dieser Methode von der Anzahl n der gewürfelten Punktepaare zu schließen.

(Lösung: $\sigma_{\pi} = 1.64/\sqrt{n}$, Oktett-Methode: $\sigma_{\pi,oct} = 0.81/\sqrt{n}$)

b) Stellen Sie die Abweichung der in 2.2c) bestimmten Zahl von Pi in Abhängigkeit von der Anzahl der gewürfelten Punktepaare graphisch dar, und vergleichen Sie das Ergebnis mit der Erwartung.

3.2 Simulation von Gleich- und Normalverteilungen

a) Erzeugen Sie N-mal (N groß) jeweils n
 gleichverteilte Zufallszahlen x_i ($i=1,\ldots,n$) und plotten Sie die Größe

$$y = \sum_{i=1}^{n} x_i$$

für n = 1, 2, 3, 6, 12. Wie entwickeln sich die damit erhaltenen Verteilungen mit n?

- b) Berechnen Sie Mittelwert μ und Varianz σ^2 der Verteilungen.
- c) Vergleichen Sie graphisch die Verteilungen mit der Normalverteilung $N(\mu, \sigma)$. Wie müssen 'gemessene' und berechnete Verteilung aufeinander normiert werden?