Ausgabe: 22.6.2006 Abgabe: 29.6.2006

Übung zur Vorlesung "Experimentelle Elementarteilchenphysik" SS 2006

H. Kolanoski, J. Kretzschmar

9. Übung

9.1 MSW-Effekt in der Sonne (10 Punkte)

a) Bringen Sie den Hamilton-Operator für die Entwicklung von zwei Neutrino-Flavours in Materie, Gleichung (4.51) im Skript, in die formal gleiche Form wie den entsprechenden Hamilton-Operator im Vakuum, Gleichung (4.49). Geben Sie die Gleichungen für die Massendifferenz Δm_m und den Winkel θ_m in Materie an.

Hinweise: Sie erhalten die Größen für die Oszillation in Materie durch Vergleich der Matrixelemente. Sie können zuerst $\tan 2\theta_m$ und dann Δm_m über die Beziehung

$$\Delta m^2 \sin 2\theta = \Delta m_m^2 \sin 2\theta_m$$

bestimmen.

- b) Man spricht von einer Oszillationsresonanz, wenn $\tan 2\theta_m$ unendlich wird. Geben Sie die Resonanzbedingung als Funktion der ortsabhängigen Elektronendichte $N_e(r)$ an.
- c) Die Masseneigenzustände ν_{1m} und ν_{2m} mischen wie im Vakuum zu Flavoureigenzustände ν_e und ν_μ , wenn man θ durch θ_m ersetzt. Welche ν_e und ν_μ -Anteile haben jeweils die Masseneigenzustände in Materie, ν_{1m} und ν_{2m} in Abhängigkeit von θ_m ? Welcher Mischungswinkel θ_m ergibt sich an der Resonanz und wie sind hier demzufolge die Anteile der Flavour- an den Masseneigenzuständen in Materie?
- d) Stellen Sie die Elektronendichte, für die die Resonanzbedingung erfüllt ist, als Funktion der Neutrinoenergie graphisch dar. Ab welcher Energie kann die Resonanz auftreten, wenn die Elektronendichte im Sonneninneren $N_e(0) \approx 6 \cdot 10^{25} \, \mathrm{cm}^{-3}$ ist? Beachten Sie bei der Rechnung die Einheiten, also die Faktoren von \hbar und c!
- e) Gegeben sei eine Neutrinoenergie von 10 MeV. Wie sind dann die ν_e und ν_{μ} -Anteile der Masseneigenzustände im Sonneninneren? Welcher Masseneigenzustand enthält den größeren ν_e -Anteil? Wie verhält dieser sich als Funktion der Elektronendichte $N_e(r)$?

9.2 Breit-Wigner-Form der Z-Resonanz (10 Punkte)

Der energieabhängige totale Wirkungsquerschnitt σ_{tot} für die e^+e^- -Annihilation in Fermionpaare, $e^+e^- \to f\bar{f}$, lässt sich als Summe dreier Beiträge darstellen:

$$\sigma_{\text{tot}}(s) = \sigma_{Z}(s) + \sigma_{\gamma Z}(s) + \sigma_{\gamma}(s)$$
.

Die Terme $\sigma_{\rm Z},\,\sigma_{\gamma{\rm Z}}$ und $\sigma_{\gamma},\,{\rm sind}$ in folgender Weise gegeben:

$$\begin{split} \sigma_Z &= \frac{12\pi}{{M_Z}^2} \frac{{M_Z}^2 \Gamma_e \Gamma_f}{(s-{M_Z}^2)^2 + {M_Z}^2 \Gamma_Z^2} \;, \\ \sigma_{\gamma Z} &= \frac{4\pi\alpha^2}{3} \frac{(s-{M_Z}^2) J_f}{(s-{M_Z}^2)^2 + {M_Z}^2 \Gamma_Z^2} \;, \\ \sigma_{\gamma} &= \frac{4\pi\alpha^2}{3s} q_e^2 q_f^2 \;, \end{split}$$

wobei die Partialbreiten Γ_f sowie der Term J_f durch die Vektor- und Axialvektorkopplungen g_v^f und g_a^f sowie die Ladungen q_e und q_f gegeben sind:

$$\begin{split} \Gamma_f &= \frac{G_F M_Z^3}{6\sqrt{2}\pi} \left((g_a^f)^2 + (g_v^f)^2 \right) \;, \\ J_f &= \frac{G_F M_Z^2}{\sqrt{2}\pi\alpha} q_e q_f g_v^e g_v^f \;. \end{split}$$

- a) Welchen Prozessen entsprechen die Beiträge $\sigma_{\rm Z}, \, \sigma_{\gamma \rm Z}$ und σ_{γ} ?
- b) Der obige Ausdruck für σ_Z wird als Breit-Wigner-Form bezeichnet. Erläutern Sie die Bedeutung von Γ_e , Γ_f und der Form des Nenners.
- c) Die Vektor
– und Axialvektorkopplungen g_v^f und g_a^f haben die Form:

$$g_v^f = I_3^f - 2q_f \sin^2 \theta_w$$
 und $g_a^f = I_3^f$

Berechnen Sie g_v^f und g_a^f für geladene Leptonen, Neutrinos, u- und d-Quarks. Benutzen Sie $\sin^2 \theta_w = 0.231$.

- d) Die totale Z-Breite Γ_Z ist die Summe der Partialbreiten der möglichen Z-Zerfälle. Berechnen Sie alle Partialbreiten sowie die totale Z-Breite und vergleichen Sie mit dem Wert des "Particle Data Booklet".
- e) Betrachten Sie die e⁺e⁻–Annihilation in Hadronen und Myonpaare bei der Z-Resonanzenergie $\sqrt{s} \approx M_Z$. Wie groß sind die Beiträge σ_Z , $\sigma_{\gamma Z}$ und σ_{γ} für beide Reaktionen.