Ausgabe: 20.4.2006 Abgabe: 27.4.2006

Übung zur Vorlesung "Experimentelle Elementarteilchenphysik" SS 2006

H. Kolanoski, J. Kretzschmar

1. Übung

Aufgabe 1: Dirac-Gleichung (6 Punkte)

Leiten Sie aus der Dirac-Gleichung die Kontinuitätsgleichung für die Ladungstromdichte $j_{\rm em}^{\mu} = -e\bar{\Psi}\gamma^{\mu}\Psi$ des Elektrons her. Sie benötigen dazu auch die Dirac-Gleichung für den adjungierten Spinor $\bar{\Psi} = \Psi^{\dagger}\gamma^{0}$.

Aufgabe 2: Chirale Fermionzustände und Helizität (14 Punkte)

Die Operatoren $P_R \equiv \frac{1}{2}(1+\gamma^5)$ und $P_L \equiv \frac{1}{2}(1-\gamma^5)$ werden als rechts- und linkshändige Projektionsoperatoren bezeichnet.

- a) Zeigen Sie, daß P_R und P_L die Beziehungen von Projektionsoperatoren, d.h. $P_i^2 = P_i$, $P_R + P_L = 1$ und $P_R P_L = 0$, erfüllen.
- b) Entgegen der obigen Bezeichnungsweise entsprechen die Projektionen $u_{\rm R}={\rm P}_{\rm R}u$ und $u_{\rm L}={\rm P}_{\rm L}u$ im allgemeinen nicht den rechts- und linkshändigen Eigenzuständen des Helizitätsoperators. Wählen Sie für den Dirac-Spinor u die Darstellung

$$u = \left(\begin{array}{c} \phi \\ \frac{\vec{\sigma}\vec{p}}{E+m}\phi \end{array}\right) ,$$

und berechnen Sie $u_{\rm R}$ und $u_{\rm L}$. Zeigen Sie, daß im relativistischen Limit, $m/E \to 0$, $u_{\rm R}$ und $u_{\rm L}$ Eigenzustände des Helizitätsoperators,

$$\frac{\vec{\Sigma}\vec{p}}{|\vec{p}|} = \begin{pmatrix} 0 & \frac{\vec{\sigma}\vec{p}}{|\vec{p}|} \\ \frac{\vec{\sigma}\vec{p}}{|\vec{p}|} & 0 \end{pmatrix}$$

sind. Hinweis: Benutzen Sie die Beziehung $(\vec{\sigma}\vec{p})^2 = \vec{p}^2 \mathbf{1}$.

- c) Wie werden die adjungierten Spinoren $\bar{u}_{L,R} = u_{L,R}^{\dagger} \gamma^0$ aus $\bar{u} = u^{\dagger} \gamma^0$ projiziert, d. h. wie lauten die zu $u_{R,L} = P_{R,L} u$ analogen Beziehungen?
- d) Zeigen Sie, daß sich die Ladungstromdichte $j_{\rm em}^{\mu}$ schreiben läßt als $j_{\rm em}^{\mu} = -e(\bar{\Psi}_{\rm L}\gamma^{\mu}\Psi_{\rm L} + \bar{\Psi}_{\rm R}\gamma^{\mu}\Psi_{\rm R}).$
- e) Ersetzen Sie im Ausdruck für den Strom die Vektorkopplung γ^{μ} durch die V-A-Kopplung $\frac{1}{2}\gamma^{\mu}(1-\gamma^{5})$. Leiten Sie die zu (d) analoge Aufspaltung her.