Results from Lattice QCD simulations with a twisted mass

Luigi Scorzato (ECT*)

Increased reliability of lattice computations mainly due to the possibility of simulating light quark masses in realistic situations

Remaining dominant systematic uncertainties:

- 'Chiral' extrapolation:

- Continuum extrapolation
- see expected scaling behavior as the lattice spacing a $\rightarrow 0$,
- different regularizations must agree.
- Lattice Perturbative calculations
(needed for matching with continuum)

Summary

I. $N_{f}=2$ Lattice QCD simulations with light dynamical twisted mass quarks.
2. Chiral Perturbation Theory for the lattice (FiniteVolume ChPT;Wilson-ChPT).
3. $N_{f}=2+I+I$ simulations.
4. Mixed Actions: chiral fermions on a tmQCD sea. talk by Oliver Bär.

Simulations with light dynamical quarks

Algorithmic improvements for Wilson fermions

I. Domain Decomposition + multiple time scales
[Lüscher Comput.Phys.Comm I65 (2005)]
2. Mass preconditionig (Hasenbusch trick)+ multiple time scales [Urbach et al. Comput.Phys.Comm I74 (2006)]
3. RHMC + multiple pseudofermions
[Clark, Kennedy hep-lat/0608015]

Performances are comparable at the same simulation point (Wilson gauge + Wilson fermions $\beta=5.6, \mathrm{~V}=24^{3} \times 32$).

Great news if compared to the sad perspective after the Berlin Lattice conference (2001).

Still physical point is far: other improvements are needed

Light dynamical quarks with Twisted Mass QCD [Alpha JHEP0108:058,2001]

$$
\begin{aligned}
D_{\mathrm{cont}} & =m_{q}+e^{i \gamma_{5} \tau_{3} \alpha} \gamma_{\mu} \nabla_{\mu} \\
D_{\text {lattice }} & =m_{q}+e^{i \gamma_{5} \tau_{3} \alpha} \underbrace{}_{\left.\frac{1}{2} \gamma_{\mu}\left[\nabla_{\mu}^{\mathrm{forw}}+\nabla_{\mu}^{\mathrm{back}}\right]-a \frac{1}{2} \nabla_{\mu}^{\mathrm{f}} \nabla_{\mu}^{\mathrm{b}}+m_{\text {crit }}\right)} \\
D_{\mathrm{tm}} & =m_{0}+i \mu \tau_{3} \gamma_{5}+\frac{1}{2} \gamma_{\mu}\left[\nabla_{\mu}^{\mathrm{f}}+\nabla_{\mu}^{\mathrm{b}}\right]-a \frac{1}{2} \nabla_{\mu}^{\mathrm{f}} \nabla_{\mu}^{\mathrm{b}}
\end{aligned}
$$

- det $\left[D_{t m}\right]=\operatorname{det}\left[D_{w^{2}}+\mu^{2}\right]=>$ protection against small eigenvalues; affordable computational cost.
- $m_{0}=m_{\text {crit }}=>O$ (a) improvement for hadron masses, matrix elements, form factors, decay constants.
[Frezzotti, Rossi 2004]
- Simplifies mixing problems for renormalization.
-> Big improvement over Wilson fermions
adds on top of Algorithmic improvements
- New flavor breaking terms.
- O(a) Improvement requires a determination of $\mathrm{m}_{\text {crit }}$

Lattice QCD simulations with dynamical quarks

Plan:

- 3 lattice spacings ($0.075-0.125 \mathrm{fm}$)
- Pion masses in range $250-500 \mathrm{MeV}$
- Lattice Volumes larger than 2 fm .

ETM Collaboration:

O. Bär ${ }^{(a)}$, D. Bećirevićc ${ }^{(b)}$, B. Blossier ${ }^{(b)}$, Ph. Boucaud ${ }^{(b)}$,
T. Chiarappa ${ }^{(c)}$, F. De Soto $^{(d)}$, P. Dimopoulos ${ }^{(e)}$, F. Farchioni ${ }^{(f)}$, R. Frezzotti ${ }^{(e)}$, V. Gimenez ${ }^{(g)}$, G. Herdoiza ${ }^{(e)}$, K. Jansen ${ }^{(h)}$,
J.P. Leroy ${ }^{(b)}$, M.P. Lombardo ${ }^{(i)}$, V. Lubicz ${ }^{(j)}$, G. Martinelli ${ }^{(k)}$, C. McNeile ${ }^{(l) 1}$, F. Mescia ${ }^{(i)}$, C. Michael ${ }^{(l)}$, I. Montvay ${ }^{(m)}$, G. Münster ${ }^{(f)}$, K. Nagai ${ }^{(h)}$, D. Palao ${ }^{(g)}$, M. Papinutto ${ }^{(j)}$,
O. Pène ${ }^{(b)}$, J. Pickavance ${ }^{(l)}$, J. Rodríguez-Quintero ${ }^{(n)}$,
G.C. Rossi ${ }^{(e)}$, S. Schäfer ${ }^{(h)}$, L. Scorzato ${ }^{(p)}$, A. Shindler ${ }^{(h)}$, S. Simula ${ }^{(j)}$, C. Tarantino ${ }^{(q)}$, C. Urbach ${ }^{(l)}$, A. Vladikas ${ }^{(e)}$, U. Wenger ${ }^{(r)}$
${ }^{(a)}$ Institute of Physics, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
(b) Laboratoire de Physique Théorique (Bât. 210), Université de Paris XI, Centre d'Orsay, 91405 Orsay-Cedex, France
(c) Università di Milano Bicocca and INFN, Sez. di Milano Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
${ }^{(d)}$ Laboratoire de Physique Subatomique et Cosmologie, 53 avenue des Martyrs, 38026 Grenoble, France
${ }^{(e)}$ Dip. di Fisica, Università di Roma Tor Vergata and INFN, Sez. di Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma, Italy
${ }^{(f)}$ Universität Münster, Institut für Theoretische Physik, Wilhelm-Klemm-Str. 9, D-48149 Münster, Germany
${ }^{(g)}$ Dep. de Física Teòrica and IFIC, Univ. de València, Dr.Moliner 50, E-46100
(h) NIC, DESY, Zeuthen, Platanenallee 6, D-15738 Zeuthen, Germany
${ }^{(i)}$ INFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati, Italy
${ }^{(j)}$ Dip. di Fisica, Università di Roma Tre and INFN, Sez. di Roma III, Via della Vasca Navale 84, I-00146 Roma, Italy
${ }^{(k)}$ Dip. di Fisica, Università di Roma "La Sapienza", and INFN, Sezione di Roma, P.le A. Moro 2, I-00185 Rome, Italy
${ }^{(l)}$ Theoretical Physics Division, Dept. of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
${ }^{(m)}$ Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
${ }^{(n)}$ Dpto. Física Aplicada, Fac. Ciencias Experimentales, Universidad de Huelva, 21071 Huelva, Spain. ${ }^{p}$ ECT* strada delle tabarelle 286, I-38050 Villazzano (TN), Italy
${ }^{(q)}$ Physik Department, Technische Universität München, D-85748 Garching, Germany ${ }_{(r)}$ Institute for Theoretical Physics, ETH Zurich, CH-8093 Zurich, Switzerland

[^0]
Recent simulation points (ETMC)

$$
\mathrm{N}_{\mathrm{f}}=2
$$

β	μ	$\mathrm{L}^{3} \times \mathrm{T}$	$\mathrm{a}[\mathrm{fm}]$	$\mathrm{m}_{\pi}[\mathrm{MeV}]$	\#meas
3.9	0.0040	$24^{3} \times 48$	~ 0.095	~ 280	I 8 II
	0.0064	$24^{3} \times 48$		~ 350	1507
	0.0085	$24^{3} \times 48$		~ 400	1533
	0.0100	$24^{3} \times 48$		~ 440	1232
	0.0150	$24^{3} \times 48$		~ 535	1000
	0.0040	$32^{3} \times 64$		-	therm
4.05	0.0030	$32^{3} \times 64$	~ 0.075	~ 270	955
	0.0060	$32^{3} \times 64$		~ 380	104
	0.0080	$32^{3} \times 64$		-	therm
	0.0100	$32^{3} \times 64$		-	therm

For how many years you need a Teraflop machine to produce 1000 independent gauge configurations at a given point

Scale set by ro (surprisely constant with μ)
Simulations performed in:
Jülich BGL; QCDOC; APENext Roma + Zeuthen; Münich Altix; MareNostrum

Setting the scale

ro/a quite constant with μ (does not need to be)

Full twist

$a m=\sqrt{\left(Z_{A} a m_{\mathrm{PCAC}}^{\text {untwisted }}\right)^{2}+(a \mu)^{2}} \quad\left(Z_{A}=1\right)$

Pion mass (aM M_{π} vs. quark mass $a \mu$

Pion decay constant (aF_{π}) vs. Pion mass ($\mathrm{a} \mathrm{M}_{\pi}$)

Of course we need to set the scale and extrpolate to physical $M_{\pi}=>$ ChPT

Unquenched configurations are ready: Many other physical results to come soon!!

Chiral Perturbation Theory

Chiral Perturbation Theory [Weinberg'79, Gasser-Leutwyler '84]

By Goldstone theorem: if $m_{q}=0$, the spectrum has a set of massless modes parametrized by the cosets manifold: $\quad \Sigma \in\left[\operatorname{SU}\left(N_{f}\right) L \times \operatorname{SU}\left(N_{f}\right)_{R}\right] / \operatorname{SU}\left(N_{f}\right)^{\prime}$
If $\mathrm{m}_{\mathrm{q}}, \mathrm{E}, \mathrm{p} \ll \Lambda_{\mathrm{QcD}} \sim \mathrm{I} \mathrm{GeV}$, Dynamics essentially given by the almost massless modes above.

- Write the most general lagrangian preserving the full symmetry (one unknown coefficient \forall invariant term).
- Add symmetry breaking terms, which transform as the mass terms.
- Expand in powers of m_{q} and p. At LO:

$$
\mathcal{L}_{2}=\frac{F^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right)-\frac{F^{2} B}{2} \operatorname{Tr}\left(m \Sigma^{\dagger}+\Sigma m^{\dagger}\right)
$$

- Very successful phenomenological approach.
- Lattice QCD can in principle predict the unknown coefficients (at LO F,B, at NLO Li$)$
- ChPT provides analytical functions essential to fit lattice data.

Cutoff Chiral Perturbation Theory

Finite Volume ChPT (IR cutoff)
relevant for us p-regime: $M_{\pi} L \gg 1$ (see also ϵ-regime: $M_{\pi} L<1$)
2 approaches:

- Lüscher ‘86
- Gasser, Leutwyler '87
combining both approaches: Colangelo, Dürr, Haefeli Nucl.Phys.B72I (2005)

ChPT with lattice artifacts (UV cutoff) (Wilson-ChPT)

- introduced: Sharpe, Singleton ‘98
- developed: Rupak, Shoresh'02 and Bär'03,Aoki'03
- extended to tmQCD: Sharpe,Wu; L.S;Münster,Schmidt,Scholz;Aoki, Bär.'04
- extended to staggered: Sharpe, Lee '99; Bernard,Aubin,Wang
- recent review Sharpe hep-lat/0607016

ChPT with Finite Volume corrections

Corrections from ChPT [Gasser, Leutwyler ‘87]
NLO ChPT fit

Caveat I. Large error on the physical point due to r 0 indetermination
Caveat 2. Better assessment of finite size effects. (Colangelo, Dürr, Haefeli Nucl.Phys.B72I (2005))
Caveat 3 . No continuum extrapolation yet.
Caveat 4. Note: we assume here $\mathrm{a}=\mathrm{a}(\beta)$.

ChPT with lattice artifacts (W-ChPT)

The problem: the path from the lattice to continuum ChPT is quite long...

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{QCD}}^{\text {latice }}=-\frac{1}{g_{0}^{2}} \operatorname{tr} U_{P}+\bar{\psi}_{l}(x)\left[\frac{1}{2} \overleftrightarrow{\nabla}-r \frac{a}{2} \nabla^{\star} \cdot \nabla+m_{0}\right] \psi_{l}(x) \\
& \text { I } \\
& \mathcal{L}_{\text {QCD }}^{\text {Symanzzk }}=-\frac{1}{2} \operatorname{tr} F_{\mu \nu}^{2}+\bar{\psi}(D D+m) \psi+\underline{c_{\text {sw }} a \bar{\psi} i \sigma_{\mu \nu} F_{\mu \nu} \psi}+O\left(a m, a^{2}\right) \\
& \downarrow \\
& \mathcal{L}_{\mathrm{QCD}}^{\text {continuum }}=-\frac{1}{2} \operatorname{tr} F_{\mu \nu}^{2}+\bar{\psi}(\not D+m) \psi \quad \mathcal{L}_{\mathrm{ChPT}}^{\text {continuum }}
\end{aligned}
$$

... but we can divide it into steps

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{QCD}}^{\text {lattice }}=-\frac{1}{g_{0}^{2}} \operatorname{tr} U_{P}+\bar{\psi}_{l}(x)\left[\frac{1}{2} \overleftrightarrow{\nabla}-r \frac{a}{2} \nabla^{\star} \cdot \nabla+m_{0}\right] \psi_{l}(x) \\
& \downarrow \\
& \mathcal{L}_{\text {QCD }}^{\text {Symanzzk }}=-\frac{1}{2} \operatorname{tr} F_{\mu \nu}^{2}+\bar{\psi}(D D+m) \psi+\underline{c_{\mathrm{sw}} a \bar{\psi} i \sigma_{\mu \nu} F_{\mu \nu} \psi}+O\left(a m, a^{2}\right) \\
& \downarrow \\
& \mathcal{L}_{\mathrm{QCD}}^{\text {Continuum }}=-\frac{1}{2} \operatorname{tr} F_{\mu \nu}^{2}+\bar{\psi}(I D+m) \psi \longrightarrow \mathcal{L}_{\text {ChPT }}^{\text {lattice }} \\
&
\end{aligned}
$$

Lattice-Chiral Perturbation Theory [Sharpe and coll.'98]

Include lattice artifacts

- Leading Order $a \bar{q} \sigma_{\mu \nu} F^{\mu \nu} q \quad$ which transforms like a mass term $\quad m \bar{q} q$

Near the continuum: $\quad a \Lambda_{\mathrm{QCD}} \ll 1$

$$
\mathcal{L}_{2}=\frac{F^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right)-\frac{F^{2} B}{2} \operatorname{Tr}\left(m \Sigma^{\dagger}+\Sigma m^{\dagger}\right)-\frac{F^{2} W}{2} \operatorname{Tr}\left(a \Sigma^{\dagger}+\Sigma a^{\dagger}\right)
$$

- Interesting part is actually a Next to Leading Order.
- At NLO, besides L_{i} 's, we must introduce also W_{i} 's.
- The W_{i} 's depend on the lattice action and on the definitions of the currents.

Is that useful?

Consider the relation between the mass of the Goldstone modes m_{π} and quark mass m_{q} in the continuum.

Gell-Mann Oakes Renner (LO ChPT): $\quad m_{\pi}^{2}=2 B_{0}\left|m_{q}\right|$

Is that useful?

The Phase structure of QCD near $\mathrm{m}_{\mathrm{q}}=0$ is modified by lattice artifacts

Sharpe Singleton '98: Lattice modified Gell-Mann Oakes Renner: $m_{\pi}^{2}=2 B_{0}\left|m_{q}\right|$

Indeed simulations confirmed the Ist order phase transition scenario [XLF and $\mathrm{qq}+\mathrm{q}$]

PLAQ gauge,
twisted mass: $\mathrm{a} \mu=0.01$,
$\mathrm{a} \sim 0.16 \mathrm{fm}, \beta=5.2$

- Sharpe Singleton (Lattice-ChPT) pattern confirmed.
- Metastabilities could make you overlook the problem!

Confirmed by simulations with both HMC and TSMB algorithm.
No numerical instabilities.

Indeed simulations confirmed the Ist order phase transition scenario [XLF and qq+q]

\Rightarrow Bad problem but simple solution: different starting points, hysteresis loops

Consider also $\mathrm{m}_{\text {pcac }}$

PLAQ gauge,
twisted mass: $a \mu=0.01$,
$a \sim 0.16 \mathrm{fm}$

DBW2 gauge,
twisted mass: $\mathrm{a} \mu=0.01$,

$$
\mathrm{a} \sim 0.19 \mathrm{fm}
$$

Choice:Tree Level Symanzik Improved Gauge Action

$$
S_{\text {gauge }}=\left(1-8 c_{1}\right) \operatorname{Tr}(\square)+c_{1} \operatorname{Tr}(\square)\left\{\begin{array}{lll}
c_{1}=0 & \text { PLAQ } & \\
c_{1}=-\frac{1}{12} & \text { TLSym } & \text { Tree Level in PT } \\
c_{1}=-0.331 & \text { Iwasaki } & \text { RG non PT Imp. } \\
c_{1}=-1.4088 & \text { DBW2 } & \text { RG non PT Imp. }
\end{array}\right.
$$

Check that simulations from both starting point agree:

Phase structure and algorithmic instabilities

Algorithmic instabilities in HMC with light quarks (very general problem)

Nice identification of the problem: [Del Debbio et al. JHEP0602:011,2006]
$\sigma=$ mean square deviation of the lowest eigenvalue of the hermit. lattice Dirac op. $1 \gamma_{5} \mathrm{DI}$
$\bar{\mu}=$ average lowest eigenvalue of $\left|\gamma_{5} D\right|$
Problems appear when $\bar{\mu} \gg \sigma$ is not satisfied
$\bar{\mu}$ is proportional to the physical mass
One observe that $\sigma=\frac{a}{\sqrt{V}}$

Solution:
 $$
m_{\pi} L \gg \sqrt{a(2 B / Z)}
$$

Remark: in our case the Twisted Mass μ is already a rigid IR cutoff.

However, the phase structure is independent on the algorithm.
In fact the two "safety" conditions are independent
Safety from Algo. instabilities [Del Debbio et al. JHEP0602:011,2006]

$$
m_{\pi} L \gg \sqrt{a(2 B / Z)}
$$

Safety from Ist order ph.trans. [Sharpe,Singleton PRD58; Sharpe,Wu PRD7I]

$$
m_{\pi} \gg a \sqrt{2 B \Lambda^{3}}
$$

See also Sharpe PRD74

Pion Mass Splitting

In tmQCD flavor symmetry is broken.
A good measure of it is the pion mass splitting. To NLO in ChPT with lattice artifacts [L.S. '04, Sharpe,Wu'04]

$$
m_{\pi \pm}^{2}-m_{\pi 3}^{2}=c a^{2} \sin (\omega)^{2}
$$

This is related to the phase structure because:
If $\mathrm{c}<0$ => Aoki phase
If $\mathrm{c}>0=>$ Ist order phase trans. at finite $\mathrm{m}_{\pi} \longrightarrow m_{\pi \text { min }}^{2}=c a^{2}$

Picture for $m_{\pi 3}$ and m_{π}

 (twisted/untwisted dependence) [Sharpe,Wu '04]$\mathrm{m}_{\pi 3}$ goes below the minimum at NON zero twisted mass.

Large split attained in a small region for small twisted mass values.

(d) Fion mases, $\beta=1$

(h) Flon mases, $\beta=3$

Preliminary Pion mass splitting

Thanks to the Liverpool group!

$$
\begin{aligned}
a m_{\pi \pm} & =0.1369(5) \\
a m_{\pi 3} & =0.098(4) \\
a m_{\pi \pm}-a m_{\pi 3} & =0.03(1)
\end{aligned}
$$

$$
m_{\pi \min } \simeq 198(8)(20) \mathrm{MeV}
$$

From indetermination of rO
statistic

Definition of fixed lattice spacing at different masses

- Pion mass splitting is mass independent up to NNLO: $\quad m_{\pi \pm}^{2}-m_{\pi 3}^{2}=c a^{2} \sin (\omega)^{2}$
-This offers a probably impractical but theoretically clear definition of lattice spacing a, which is compatible whit ChPT
- In the physical point all definition of a' are ok, even if: (even $a=\mathrm{aF}_{\mathrm{T}} /(92 \mathrm{MeV})$)

$$
a^{\prime}=a\left(1+\lambda m / \Lambda_{\mathrm{QCD}}\right)
$$

- However, to compare with ChPT, only those are good such that

$$
a^{\prime}=a(1+\lambda a m)
$$ at least. Otherwise LEC's would be wrong in the continuum limit

- No problems for ratios of quantities which have ChPT predictions (for example: F_{π} / M_{π})
- But it is a problem when fitting for example: aF_{π}

Is it possible to prove that the usual definition $\mathrm{a}=\mathrm{a}(\beta)$ has a good relation with the natural one in ChPT ?

- The relation between the two definitions $a=a(\beta)$ and $a=a\left(r_{0}\right)$ has been discussed in [Aoki at Lattice2000, Sommer at Lattice 2003].

... which is probably the case for a large range of masses

Other examples

Global fits of $\underline{m}_{\pi}, f_{n}, g_{\pi}$ at different quark masses at different lattice spacings

Many constraints, Compatible results!

Here the lattice spacing is quite large: $\mathrm{a} \sim 0.15-0.20 \mathrm{fm}$

$N f=2+|+|$

-Realistic QCD simulations should include the dynamical strange
-No "single twisted fermion" possible.
-Obvious possibility: untwisted strange.
-Alternative: introduce both strange and charm a la
[Frezzotti Rossi '04] as mass split dublet. (determinant remains positive).

Valid representation for the heavy doublet:

$$
D_{\mathrm{tm}}=m_{0}+i \mu_{\sigma} \tau_{i} \gamma_{5}+\mu_{\delta} \tau_{j}+\frac{1}{2} \gamma_{\mu}\left[\nabla_{\mu}^{\mathrm{f}}+\nabla_{\mu}^{\mathrm{b}}\right]-a \frac{1}{2} \nabla_{\mu}^{\mathrm{f}} \nabla_{\mu}^{\mathrm{b}}
$$

Two new parameters to tune, but no new critical mass. (m_{0} - which is the difficult one - is the same as for the light dublet).

A bit more algebra to work out the physical currents. (but this needs to be done only once)

Some results of Pion and Meson masses

Algorithm: PHMC [Montvay, Scholz Phys.Lett.B623]

ChPT

$$
\begin{aligned}
\frac{m_{\pi}^{2}}{m_{K}^{2}} & =\frac{2 m_{u d}}{m_{u d}+m_{s}} \quad(\text { LO ChPT }) \\
m_{u d} & =\sqrt{\left(Z_{A} m_{\chi l}^{\mathrm{PCAC}}\right)^{2}+\mu_{l}^{2}} \\
m_{s} & =\sqrt{\left(Z_{A} m_{\chi h}^{\mathrm{PCAC}}\right)^{2}+\mu_{\sigma}^{2}}-\frac{Z_{P}}{Z_{S}} \mu_{\delta}
\end{aligned}
$$

fitted $Z_{P} / Z_{S} \simeq 0.45$
take Z_{A} as input
$m_{\chi l}^{P C A C} \approx m_{\chi h}^{\text {PCAC }}$

Conclusions

- tmQCD has entered the production phase: more physical quantities to come soon.
- Some preliminary analysis of Finite Size effects.
- Wilson-ChPT is very useful to asses consistency of effects of small lattice artifacts. Nice agreement between phase structure and pion mass splitting $=>$ associated $\mathrm{O}\left(\mathrm{a}^{2}\right)$ effects under control
- $N f=2+I+\mid$ simulations are coming.
- Mixed Actions: see talk by Oliver Bär.

[^0]: ${ }^{1}$ Present address: Dept. of Physics, University of Glasgow

