## Lattice QCD with two light Wilson twisted mass quarks

A status report

Urs Wenger (ETH Zürich)

with the European Twisted Mass Collaboration (ETMC)

Bern, 30 March 2007

# Quantumchromodynamics (QCD) – the theory of strong interactions

$$\mathcal{L}_{\mathsf{QCD}} = ar{\psi}(iD \hspace{-0.5mm}/ - m_q)\psi - rac{1}{4}G_{\mu
u}G^{\mu
u}$$

- a simple and beautiful field theory,
- parameters are the quark masses m<sub>q</sub> and the dimensionless gauge coupling,
- in the chiral limit a scale is generated through <u>dimensional</u> <u>transmutation</u>,
- all dimensionful quantities can be expressed in units of *one characteristic scale*, e.g. the proton mass,

### Motivation

- exhibits a variety of non-perturbative phenomena like
  - colour confinement,
  - spontaneous breaking of chiral symmetry,
  - its restoration at high temperature or density.
- A qualitative and quantitative understanding of these phenomena provides
  - confirmation of the theoretical framework,
  - necessary input for SM phenomenology,
  - valuable contributions to the discovery of new physics beyond the SM.

## ⇒ Lattice QCD is a (the) non-perturbative method for such ab-initio calculations

Introduction Lattice Formulation of QCD Physics Results HMC Algorithm Outlook Wilson Twisted Mass Fermions

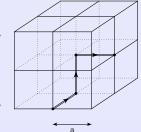
QCD on the Lattice I

Quantumchromodynamics is formally described by the Lagrange density:

$$\mathcal{L}_{\mathsf{QCD}} = ar{\psi}(iD - m_q)\psi - rac{1}{4}G_{\mu
u}G^{\mu
u}$$

Lattice regularization: discretize Euclidean space-time

- hypercubic  $L^3 \times T$ -lattice with lattice spacing *a*
- derivatives  $\Rightarrow$  finite differences
- integrals  $\Rightarrow$  sums
- gauge potentials  $A_{\mu}$  in  $G_{\mu\nu} \Rightarrow$ link matrices  $U_{\mu}$  (' $\longrightarrow$ )



Lattice Formulation of QCD HMC Algorithm Wilson Twisted Mass Fermions

## Wilson Formulation

## Wilson Dirac Operator

$$D_{\mathrm{W}}[U]+m_0=rac{1}{2}\sum_{\mu}\Big[\gamma_{\mu}(
abla_{\mu}+
abla_{\mu}^*) igg]+m_0$$

Lattice Formulation of QCD HMC Algorithm Wilson Twisted Mass Fermions

## Wilson Formulation

## Wilson Dirac Operator

$$D_{\mathrm{W}}[U] + m_0 = rac{1}{2} \sum_{\mu} \Big[ \gamma_{\mu} (
abla_{\mu} + 
abla_{\mu}^*) \Big] + m_0$$

• with the covariant difference operators:

$$\nabla_{\mu}\psi(\mathbf{x}) = \frac{1}{a} \Big[ U(\mathbf{x},\mu)\psi(\mathbf{x}+\mathbf{a}\hat{\mu}) - \psi(\mathbf{x}) \Big]$$
$$\nabla^{*}_{\mu}\psi(\mathbf{x}) = \frac{1}{a} \Big[ \psi(\mathbf{x}) - U(\mathbf{x},-\mu)\psi(\mathbf{x}-\mathbf{a}\hat{\mu}) \Big]$$

Lattice Formulation of QCD HMC Algorithm Wilson Twisted Mass Fermions

## Wilson Formulation

## Wilson Dirac Operator

$$D_{\mathrm{W}}[U] + m_0 = rac{1}{2} \sum_{\mu} \Big[ \gamma_{\mu} (
abla_{\mu} + 
abla_{\mu}^*) \Big] + m_0$$

• with the covariant difference operators:

$$\nabla_{\mu}\psi(\mathbf{x}) = \frac{1}{a} \Big[ U(\mathbf{x},\mu)\psi(\mathbf{x}+a\hat{\mu}) - \psi(\mathbf{x}) \Big]$$
$$\nabla_{\mu}^{*}\psi(\mathbf{x}) = \frac{1}{a} \Big[ \psi(\mathbf{x}) - U(\mathbf{x},-\mu)\psi(\mathbf{x}-a\hat{\mu}) \Big]$$

• suffers from a fermion doubling problem.

Lattice Formulation of QCD HMC Algorithm Wilson Twisted Mass Fermions

## Wilson Formulation

## Wilson Dirac Operator

$$D_{\mathrm{W}}[U] + m_0 = rac{1}{2} \sum_{\mu} \left[ \gamma_{\mu} (
abla_{\mu} + 
abla_{\mu}^*) - a 
abla_{\mu}^* 
abla_{\mu} 
ight] + m_0$$

• Wilson Term  $-a \nabla^*_{\mu} \nabla_{\mu}$ 

Lattice Formulation of QCD HMC Algorithm Wilson Twisted Mass Fermions

## Wilson Formulation

## Wilson Dirac Operator

$$D_{\mathrm{W}}[U] + m_0 = \frac{1}{2} \sum_{\mu} \left[ \gamma_{\mu} (\nabla_{\mu} + \nabla^*_{\mu}) - \mathbf{a} \nabla^*_{\mu} \nabla_{\mu} \right] + m_0$$

• Wilson Term  $-a\nabla^*_{\mu}\nabla_{\mu}$ 

• solves the fermion doubling problem,

Lattice Formulation of QCD HMC Algorithm Wilson Twisted Mass Fermions

## Wilson Formulation

## Wilson Dirac Operator

$$D_{\mathrm{W}}[U] + m_0 = \frac{1}{2} \sum_{\mu} \left[ \gamma_{\mu} (\nabla_{\mu} + \nabla^*_{\mu}) - \mathbf{a} \nabla^*_{\mu} \nabla_{\mu} \right] + m_0$$

• Wilson Term  $-a \nabla^*_{\mu} \nabla_{\mu}$ 

• solves the fermion doubling problem,

- but:
  - chiral symmetry is explicitly broken,  $\{D_W, \gamma_5\} \neq 0$ ,
  - therefore *m*<sub>0</sub> renormalises additively (and multiplicatively)

$$m_q = m_0 - m_{\rm crit}$$
,

• leading lattice artifacts are  $\mathcal{O}(a)$ ,

Lattice Formulation of QCD HMC Algorithm Wilson Twisted Mass Fermions

## Wilson Formulation

## Wilson Dirac Operator

$$D_{\mathrm{W}}[U] + m_0 = \frac{1}{2} \sum_{\mu} \left[ \gamma_{\mu} (\nabla_{\mu} + \nabla^*_{\mu}) - \mathbf{a} \nabla^*_{\mu} \nabla_{\mu} \right] + m_0$$

• Wilson Term  $-a \nabla^*_{\mu} \nabla_{\mu}$ 

solves the fermion doubling problem,

- but:
  - chiral symmetry is explicitly broken,  $\{D_W, \gamma_5\} \neq 0$ ,
  - therefore *m*<sub>0</sub> renormalises additively (and multiplicatively)

$$m_q = m_0 - m_{\rm crit}$$
,

- leading lattice artifacts are  $\mathcal{O}(a)$ ,
- unphysically small eigenvalues of  $D_W[U] + m_0$ .

Introduction Lattice Formulation of QCD Physics Results HMC Algorithm Outlook Wilson Twisted Mass Fermions

### QCD on the Lattice II

- Partition function  $\mathcal{Z}_{QCD} = \int (\mathcal{D}U\mathcal{D}\bar{\psi}\mathcal{D}\psi) e^{-S_{QCD}[U;\bar{\psi},\psi]}$
- Mathematically well defined in Euclidean space-time on a finite volume.
- Non-perturbative, gauge invariant regularisation:

   non-perturbative (low energy) physics
- Continuum limit  $\Rightarrow a \rightarrow 0$ :
  - Poincaré symmetries are restored automatically,
  - Universality guarantees irrelevance of discretisation details.
- The expectation value of an operator O is defined non-perturbatively by the functional integral

$$\langle \mathcal{O} \rangle \equiv \frac{1}{\mathcal{Z}_{QCD}} \int \left( \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi \right) e^{-S_{QCD}[U; \bar{\psi}, \psi]} \mathcal{O}[\bar{\psi}, \psi; U],$$



#### QCD on the Lattice III

- The finite number of finite integrals can be evaluated on a computer.
- Integrate out the fermion fields to obtain the fermion determinant ∫ D ψ D ψ e<sup>-ψDψ</sup> ∝ det(D):

$$\mathcal{Z} = \int (\mathcal{D}U) \det D(U) \mathrm{e}^{-S_{\mathsf{G}}[U]}$$

Any operator O can be expressed in terms of the bosonic fields

$$\mathcal{O}'(U) = \mathcal{O}\left(rac{\delta}{\delta\psi},rac{\delta}{\deltaar{\psi}};U
ight) oldsymbol{e}^{-ar{\psi} \mathcal{D}\psi}igg|_{\psi=ar{\psi}=0}$$

e.g. the fermion propagator is  $\langle \psi(x)\bar{\psi}(y)\rangle = D^{-1}(x,y)$ .



• For given parameters lattice calculations are exact (up to statistical errors)...

| Lattice Formulation of QCD   |
|------------------------------|
| HMC Algorithm                |
| Wilson Twisted Mass Fermions |
|                              |

- For given parameters lattice calculations are exact (up to statistical errors)...
- ... but we need to control the systematic artefacts:

| Introduction    | Lattice Formulation of QCD   |
|-----------------|------------------------------|
| Physics Results | HMC Algorithm                |
| Outlook         | Wilson Twisted Mass Fermions |

- For given parameters lattice calculations are exact (up to statistical errors)...
- ... but we need to control the systematic artefacts:
  - lattice spacing effects  $\Rightarrow$  continuum limit, lattice spacing  $a \rightarrow 0$ ,

| Introduction    | Lattice Formulation of QCD   |
|-----------------|------------------------------|
| Physics Results | HMC Algorithm                |
| Outlook         | Wilson Twisted Mass Fermions |

- For given parameters lattice calculations are exact (up to statistical errors)...
- ... but we need to control the systematic artefacts:
  - lattice spacing effects  $\Rightarrow$  continuum limit, lattice spacing  $a \rightarrow 0$ ,
  - finite size effects  $\Rightarrow$  thermodynamic limit, physical volume  $L^3 \rightarrow \infty,$

| Introduction    | Lattice Formulation of QCD   |
|-----------------|------------------------------|
| Physics Results | HMC Algorithm                |
| Outlook         | Wilson Twisted Mass Fermions |

- For given parameters lattice calculations are exact (up to statistical errors)...
- ... but we need to control the systematic artefacts:
  - lattice spacing effects  $\Rightarrow$  continuum limit, lattice spacing  $a \rightarrow 0$ ,
  - finite size effects  $\Rightarrow$  thermodynamic limit, physical volume  $L^3 \rightarrow \infty,$
  - chiral effects  $\Rightarrow$  chiral limit,  $m_{PS} \rightarrow m_{\pi}$ ,

| Introduction    | Lattice Formulation of QCD   |
|-----------------|------------------------------|
| Physics Results | HMC Algorithm                |
| Outlook         | Wilson Twisted Mass Fermions |

- For given parameters lattice calculations are exact (up to statistical errors)...
- ... but we need to control the systematic artefacts:
  - lattice spacing effects  $\Rightarrow$  continuum limit, lattice spacing  $a \rightarrow 0$ ,
  - finite size effects  $\Rightarrow$  thermodynamic limit, physical volume  $L^3 \rightarrow \infty,$
  - chiral effects  $\Rightarrow$  chiral limit,  $m_{PS} \rightarrow m_{\pi}$ ,

 $\Rightarrow$  subtle interplay of limits

| Introduction    | Lattice Formulation of QCD   |
|-----------------|------------------------------|
| Physics Results | HMC Algorithm                |
| Outlook         | Wilson Twisted Mass Fermions |

- For given parameters lattice calculations are exact (up to statistical errors)...
- ... but we need to control the systematic artefacts:
  - lattice spacing effects  $\Rightarrow$  continuum limit, lattice spacing  $a \rightarrow 0$ ,
  - finite size effects  $\Rightarrow$  thermodynamic limit, physical volume  $L^3 \rightarrow \infty,$
  - chiral effects  $\Rightarrow$  chiral limit,  $m_{\text{PS}} \rightarrow m_{\pi}$ ,

 $\Rightarrow$  subtle interplay of limits

We need

a < 0.1 fm, *L* > 2 fm, *m*<sub>PS</sub> < 300 MeV.

Why is it so expensive?

## We need to compute

$$\mathcal{Z}_{ extsf{QCD}} \propto \int \mathcal{D} ar{\psi} \; \mathcal{D} \psi \; extsf{e}^{-ar{\psi}(D+m_q)\psi} \; \propto \; \det(D+m_q).$$

## Why is it so expensive?

## We need to compute

$$\mathcal{Z}_{ extsf{QCD}} \propto \int \mathcal{D} ar{\psi} \; \mathcal{D} \psi \; oldsymbol{e}^{-ar{\psi}(\mathcal{D}+m_q)\psi} \; \propto \; \det(\mathcal{D}+m_q).$$

• The determinant can be represented by bosonic fields,

$$\det(D+m_q) \propto \int \mathcal{D}\phi^{\dagger} \mathcal{D}\phi \, \mathrm{e}^{-\phi^{\dagger}(D+m_q)^{-1}\phi}$$

#### Why is it so expensive?

## • We need to compute

$$\mathcal{Z}_{ extsf{QCD}} \propto \int \mathcal{D} ar{\psi} \; \mathcal{D} \psi \; m{e}^{-ar{\psi}(\mathcal{D}+m_q)\psi} \; \propto \; \det(\mathcal{D}+m_q).$$

• The determinant can be represented by bosonic fields,

$$\det(D+m_q) \propto \int \mathcal{D}\phi^{\dagger} \mathcal{D}\phi \ e^{-\phi^{\dagger}(D+m_q)^{-1}\phi},$$

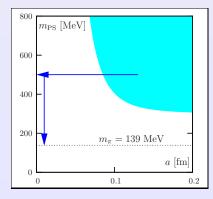
but calculating

$$\varphi = (D + m_q)^{-1}\phi$$

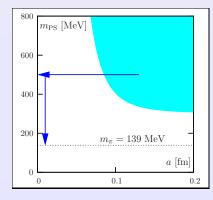
becomes very expensive for small quark mass and large lattice extent L/a.



• Cost of a simulation 
$$\propto L^5 (m_{
m PS})^{-6} a^{-7}$$
: [Ukawa '01]

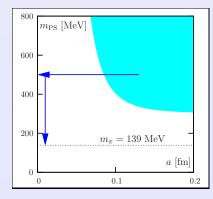






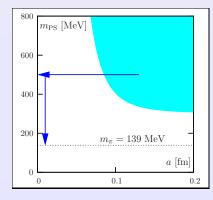
 continuum extrapolation:
 ⇒ Remove leading lattice artefacts by implementing O(a) improvement





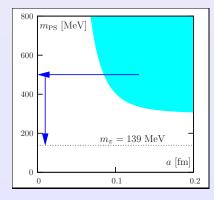
- continuum extrapolation:
   ⇒ Remove leading lattice artefacts by implementing O(a) improvement
- chiral extrapolation to  $m_{\pi}$ :  $\Rightarrow$  Use chiral perturbation theory,  $m_{\text{PS}} \lesssim 300 \text{MeV}$  necessary!



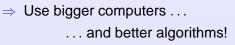


- continuum extrapolation:
   ⇒ Remove leading lattice artefacts by implementing O(a) improvement
- chiral extrapolation to  $m_{\pi}$ :  $\Rightarrow$  Use chiral perturbation theory,  $m_{\text{PS}} \lesssim 300 \text{MeV}$  necessary!
- ⇒ Use bigger computers ...





- continuum extrapolation:
   ⇒ Remove leading lattice artefacts by implementing O(a) improvement
- chiral extrapolation to  $m_{\pi}$ :  $\Rightarrow$  Use chiral perturbation theory,  $m_{\text{PS}} \lesssim 300 \text{MeV}$  necessary!





Lattice Formulation of QCD HMC Algorithm Wilson Twisted Mass Fermions



• The workhorse for lattice QCD computations is the HMC algorithm [Duane, Kennedy, Pendleton, Roweth, '87].

## **HMC** Algorithm

- The workhorse for lattice QCD computations is the HMC algorithm [Duane, Kennedy, Pendleton, Roweth, '87].
- Introduce traceless Hermitian momenta P<sub>x,μ</sub> conjugate to the fields U<sub>x,μ</sub>, and the Hamiltonian

$$\mathcal{H} = \frac{1}{2} \sum_{x,\mu} P_{x,\mu}^2 + S_{g}[U] + S_{pf}[U; \phi^{\dagger}, \phi]$$

- The workhorse for lattice QCD computations is the HMC algorithm [Duane, Kennedy, Pendleton, Roweth, '87].
- Introduce traceless Hermitian momenta P<sub>x,μ</sub> conjugate to the fields U<sub>x,μ</sub>, and the Hamiltonian

$${\cal H} \;=\; {1\over 2}\; \sum_{{\bf x},\mu}\; {\cal P}^2_{{\bf x},\mu}\;+\; {\cal S}_{\rm g}[{\cal U}]\;+\; {\cal S}_{\rm pf}[{\cal U};\phi^\dagger,\phi]\;.$$

- Molecular dynamics evolution of *P* and *U* by numerical integration of the corresponding equations of motion:
  - large forces cause small step size.

- The workhorse for lattice QCD computations is the HMC algorithm [Duane, Kennedy, Pendleton, Roweth, '87].
- Introduce traceless Hermitian momenta P<sub>x,μ</sub> conjugate to the fields U<sub>x,μ</sub>, and the Hamiltonian

$$\mathcal{H} = \frac{1}{2} \sum_{\mathbf{x},\mu} P_{\mathbf{x},\mu}^2 + S_{\rm g}[U] + S_{\rm pf}[U;\phi^{\dagger},\phi] .$$

 Molecular dynamics evolution of P and U by numerical integration of the corresponding equations of motion:

• large forces cause small step size.

• Metropolis accept/reject step to correct for discretisation errors of the numerical integration.

$$\det(\mathsf{Q}^2) = \int \mathcal{D}\phi \; \mathcal{D}\phi^{\dagger} \; \mathsf{e}^{-\phi^{\dagger} rac{1}{\mathsf{Q}^2}\phi} = \int \mathcal{D}\phi \; \mathcal{D}\phi^{\dagger} \; \mathsf{e}^{-\mathcal{S}_{\mathrm{pf}}}$$

can be preconditioned by

$$\det(\mathsf{Q}^2) = \det(\mathsf{A}_1) \cdot \det(\mathsf{A}_2) \cdot \ldots \cdot \det(\mathsf{A}_n)$$

using *n* pseudo-fermions.

$$\det(\mathsf{Q}^2) = \int \mathcal{D}\phi \; \mathcal{D}\phi^{\dagger} \; \mathsf{e}^{-\phi^{\dagger} rac{1}{\mathsf{Q}^2}\phi} = \int \mathcal{D}\phi \; \mathcal{D}\phi^{\dagger} \; \mathsf{e}^{-\mathcal{S}_{\mathrm{pf}}}$$

can be preconditioned by

$$\det(\mathsf{Q}^2) = \det(\mathsf{A}_1) \cdot \det(\mathsf{A}_2) \cdot \ldots \cdot \det(\mathsf{A}_n)$$

using *n* pseudo-fermions.

Possible choices:

$$\det(\mathsf{Q}^2) = \int \mathcal{D}\phi \; \mathcal{D}\phi^{\dagger} \; \mathsf{e}^{-\phi^{\dagger} rac{1}{\mathsf{Q}^2}\phi} = \int \mathcal{D}\phi \; \mathcal{D}\phi^{\dagger} \; \mathsf{e}^{-\mathcal{S}_{\mathrm{pf}}}$$

can be preconditioned by

$$\det(\mathsf{Q}^2) = \det(\mathsf{A}_1) \cdot \det(\mathsf{A}_2) \cdot \ldots \cdot \det(\mathsf{A}_n)$$

using *n* pseudo-fermions.

- Possible choices:
  - mass preconditioning (Hasenbusch trick) [Hasenbusch '01]

$$\det(\mathsf{Q}^2) = \int \mathcal{D}\phi \; \mathcal{D}\phi^{\dagger} \; \mathsf{e}^{-\phi^{\dagger} rac{1}{\mathsf{Q}^2}\phi} = \int \mathcal{D}\phi \; \mathcal{D}\phi^{\dagger} \; \mathsf{e}^{-\mathcal{S}_{\mathrm{pf}}}$$

can be preconditioned by

$$\det(\mathsf{Q}^2) = \det(\mathsf{A}_1) \cdot \det(\mathsf{A}_2) \cdot \ldots \cdot \det(\mathsf{A}_n)$$

using *n* pseudo-fermions.

- Possible choices:
  - mass preconditioning (Hasenbusch trick) [Hasenbusch '01]
  - polynomial filtering [Peardon & Sexton '02]

• The pseudo-fermion part ( $Q = \gamma_5 D$ ,  $N_f = 2$ ):

$$\det(\mathsf{Q}^2) = \int \mathcal{D}\phi \ \mathcal{D}\phi^{\dagger} \ \mathsf{e}^{-\phi^{\dagger} \frac{1}{\mathsf{Q}^2}\phi} = \int \mathcal{D}\phi \ \mathcal{D}\phi^{\dagger} \ \mathsf{e}^{-\mathcal{S}_{\mathrm{pf}}}$$

can be preconditioned by

$$\det(\mathsf{Q}^2) = \det(\mathsf{A}_1) \cdot \det(\mathsf{A}_2) \cdot \ldots \cdot \det(\mathsf{A}_n)$$

using *n* pseudo-fermions.

- Possible choices:
  - mass preconditioning (Hasenbusch trick) [Hasenbusch '01]
  - polynomial filtering [Peardon & Sexton '02]
  - o domain decomposition [Lüscher '03]

• The pseudo-fermion part ( $Q = \gamma_5 D$ ,  $N_f = 2$ ):

$$\det(\mathsf{Q}^2) = \int \mathcal{D}\phi \ \mathcal{D}\phi^{\dagger} \ \mathsf{e}^{-\phi^{\dagger} \frac{1}{\mathsf{Q}^2}\phi} = \int \mathcal{D}\phi \ \mathcal{D}\phi^{\dagger} \ \mathsf{e}^{-\mathcal{S}_{\mathrm{pf}}}$$

can be preconditioned by

$$\det(\mathsf{Q}^2) = \det(\mathsf{A}_1) \cdot \det(\mathsf{A}_2) \cdot \ldots \cdot \det(\mathsf{A}_n)$$

using *n* pseudo-fermions.

- Possible choices:
  - mass preconditioning (Hasenbusch trick) [Hasenbusch '01]
  - polynomial filtering [Peardon & Sexton '02]
  - o domain decomposition [Lüscher '03]
  - *n*-th root trick [Clark & Kennedy '04]



$$\det(\mathsf{Q}^2) = \det\left(\frac{\mathsf{Q}^2}{\mathsf{Q}^2 + \sigma^2}\right) \cdot \det(\mathsf{Q}^2 + \sigma^2)$$



$$\det(\mathsf{Q}^2) = \det\left(\frac{\mathsf{Q}^2}{\mathsf{Q}^2 + \sigma^2}\right) \cdot \det(\mathsf{Q}^2 + \sigma^2)$$

$$\Rightarrow$$
 condition number:  $K \rightarrow \sqrt{K}$ 



$$\det(\mathsf{Q}^2) = \det\left(\frac{\mathsf{Q}^2}{\mathsf{Q}^2 + \sigma^2}\right) \cdot \det(\mathsf{Q}^2 + \sigma^2)$$

$$\Rightarrow$$
 condition number:  $K \rightarrow \sqrt{K}$ 

- Pseudo-fermion forces are reduced
  - $\Rightarrow$  larger HMC step sizes possible.



$$\det(\mathsf{Q}^2) = \det\left(\frac{\mathsf{Q}^2}{\mathsf{Q}^2 + \sigma^2}\right) \cdot \det(\mathsf{Q}^2 + \sigma^2)$$

$$\Rightarrow$$
 condition number:  $K \rightarrow \sqrt{K}$ 

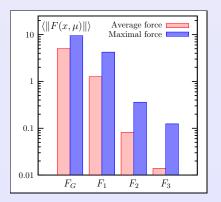
- Pseudo-fermion forces are reduced
  - $\Rightarrow$  larger HMC step sizes possible.
- Caveat: Q<sup>2</sup> must still be inverted.



## Use mass preconditioning with multiple time scales [Urbach, Jansen,

Shindler, U.W. '04]

$$S_{\rm eff} = S_G + S_1 + S_2 + \ldots + S_n$$



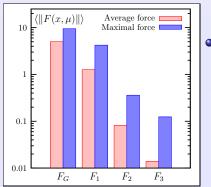


#### Multiple time scales

### Use mass preconditioning with multiple time scales [Urbach, Jansen,

Shindler, U.W. '04].

$$S_{\rm eff} = S_G + S_1 + S_2 + ... + S_n$$



 Use different timescales Δτ<sub>i</sub> for different parts in the action S<sub>i</sub>

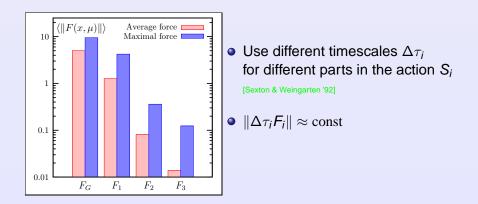
[Sexton & Weingarten '92]



### Use mass preconditioning with multiple time scales [Urbach, Jansen,

Shindler, U.W. '04].

$$S_{\rm eff} = S_G + S_1 + S_2 + ... + S_n$$

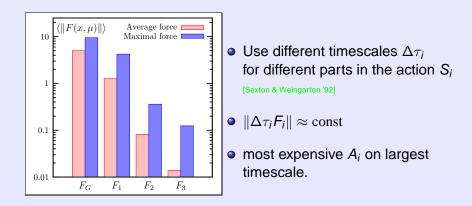




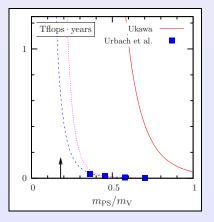
### Use mass preconditioning with multiple time scales [Urbach, Jansen,

Shindler, U.W. '04].

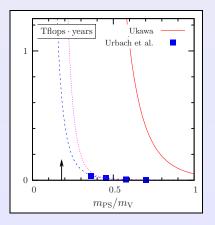
$$S_{\rm eff} = S_G + S_1 + S_2 + ... + S_n$$





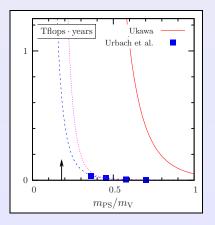






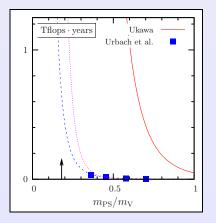
 much faster than standard HMC





- much faster than standard HMC
- scales better in  $m_{
  m PS}/m_{
  m V}$





- much faster than standard HMC
- scales better in  $m_{
  m PS}/m_{
  m V}$
- similar developments by other groups

[QCDSF '03; Lüscher '04; Peardon et al.'05; Clark

& Kennedy '05]

#### Twisted Mass Fermions I

## Consider the continuum 2-flavour fermionic action

[Frezzotti, Grassi, Sint, Weisz, '99]

$$\mathcal{S}_{\mathcal{F}} = \int d^4x \; ar{\psi} \; \left[ \mathcal{D} + m_q + oldsymbol{i} \mu \gamma_5 au_3 
ight] \psi$$

with

- twisted mass parameter μ,
- $\tau_3$  third Pauli matrix acting in flavour space.

Introduction Lattice Formulation of QCD Physics Results HMC Algorithm Outlook Wilson Twisted Mass Fermions

#### Twisted Mass Fermions I

## Consider the continuum 2-flavour fermionic action

[Frezzotti, Grassi, Sint, Weisz, '99]

$$\mathcal{S}_{\mathcal{F}} = \int d^4x \; ar{\psi} \; \left[ \mathcal{D} + m_q + oldsymbol{i} \mu \gamma_5 au_3 
ight] \psi$$

with

- twisted mass parameter  $\mu$ ,
- $\tau_3$  third Pauli matrix acting in flavour space.
- Its form is invariant under a change of variables with twist angle ω:

$$\psi 
ightarrow \mathbf{e}^{i\omega\gamma_5\tau_3/2}\psi, \qquad ar{\psi} 
ightarrow ar{\psi} \mathbf{e}^{i\omega\gamma_5\tau_3/2}$$

Introduction Physics Results Outlook Lattice Formulation of QCD HMC Algorithm Wilson Twisted Mass Fermions

#### Twisted Mass Fermions II

- Remarks:
  - functional measure is invariant,
  - transformation corresponds to a chiral rotation from 'twisted' to 'physical' basis,

 $\Rightarrow \omega = 0$  : standard action,  $\omega = \pm \frac{\pi}{2}$  : maximal twist,

mass terms transform as

$$m_q \rightarrow m_q \cos \omega + \mu \sin \omega, \quad \mu \rightarrow -m_q \sin \omega + \mu \cos \omega,$$

 twisted axial and vector currents are connected to the physical ones by

$$\begin{array}{rcl} A^{a}_{\mu} & \rightarrow & A^{a}_{\mu}\cos\omega + \varepsilon^{3ab}\,V^{b}_{\mu}\sin\omega & \mbox{ for } a = 1,2; & A^{3}_{\mu} \rightarrow A^{3}_{\mu}, \\ V^{a}_{\mu} & \rightarrow & V^{a}_{\mu}\cos\omega + \varepsilon^{3ab}A^{b}_{\mu}\sin\omega & \mbox{ for } a = 1,2; & V^{3}_{\mu} \rightarrow V^{3}_{\mu}. \end{array}$$

Introduction Physics Results Outlook

Lattice Formulation of QCD HMC Algorithm Wilson Twisted Mass Fermions

#### Wilson Twisted Mass Fermions

$$D_{\rm tm} = \frac{1}{2} \sum_{\mu} \left[ \gamma_{\mu} (\nabla_{\mu} + \nabla^*_{\mu}) - a \nabla^*_{\mu} \nabla_{\mu} \right] + m_0 + i \mu \gamma_5 \tau_3$$

Wilson Twisted Mass Dirac operator [Frezzotti, Grassi, Sint, Weisz, '99]

$$D_{\rm tm} = \frac{1}{2} \sum_{\mu} \left[ \gamma_{\mu} (\nabla_{\mu} + \nabla^*_{\mu}) - a \nabla^*_{\mu} \nabla_{\mu} \right] + m_0 + i \mu \gamma_5 \tau_3$$

• D<sub>tm</sub> is protected against unphysically small eigenvalues,

Introduction Physics Results Outlook
Utilson Twisted Mass Fermions
Utilson Twisted Mass Fermions

$$D_{\rm tm} = \frac{1}{2} \sum_{\mu} \left[ \gamma_{\mu} (\nabla_{\mu} + \nabla^*_{\mu}) - a \nabla^*_{\mu} \nabla_{\mu} \right] + m_0 + i \mu \gamma_5 \tau_3$$

- D<sub>tm</sub> is protected against unphysically small eigenvalues,
- has a strictly positive measure,

Wilson Twisted Mass Fermions

$$D_{\rm tm} = \frac{1}{2} \sum_{\mu} \left[ \gamma_{\mu} (\nabla_{\mu} + \nabla^*_{\mu}) - a \nabla^*_{\mu} \nabla_{\mu} \right] + m_0 + i \mu \gamma_5 \tau_3$$

- D<sub>tm</sub> is protected against unphysically small eigenvalues,
- has a strictly positive measure,
- differs from Wilson formulation only by lattice artifacts

Wilson Twisted Mass Fermions

$$D_{\rm tm} = \frac{1}{2} \sum_{\mu} \left[ \gamma_{\mu} (\nabla_{\mu} + \nabla^*_{\mu}) - a \nabla^*_{\mu} \nabla_{\mu} \right] + m_0 + i \mu \gamma_5 \tau_3$$

- D<sub>tm</sub> is protected against unphysically small eigenvalues,
- has a strictly positive measure,
- differs from Wilson formulation only by lattice artifacts because Wilson term a∇<sup>\*</sup><sub>µ</sub>∇<sub>µ</sub> is not invariant under change of variables,

 Introduction
 Lattice Formulation of QCD

 Physics Results
 HMC Algorithm

 Outlook
 Wilson Twisted Mass Fermions

#### Wilson Twisted Mass Fermions

Wilson Twisted Mass Dirac operator [Frezzotti, Grassi, Sint, Weisz, '99]

$$D_{\rm tm} = \frac{1}{2} \sum_{\mu} \left[ \gamma_{\mu} (\nabla_{\mu} + \nabla^*_{\mu}) - a \nabla^*_{\mu} \nabla_{\mu} \right] + m_0 + i \mu \gamma_5 \tau_3$$

- D<sub>tm</sub> is protected against unphysically small eigenvalues,
- has a strictly positive measure,
- differs from Wilson formulation only by lattice artifacts because Wilson term a∇<sup>\*</sup><sub>μ</sub>∇<sub>μ</sub> is not invariant under change of variables,

...and most importantly:

• this difference can be tuned to obtain  $\mathcal{O}(a)$  improvement.

## • If $\omega = \pi/2$ (maximal twist) then ...

O(a) Improvement

- observables are  $\mathcal{O}(a)$  improved [Frezzotti & Rossi '03]:
- ⇒ shown to work in practice for various observables in the quenched approximation [Jansen et al. '04-'05; Abdel-Rehim et al. '04-'05],

## • If $\omega = \pi/2$ (maximal twist) then ...

 $\mathcal{O}(a)$  Improvement

- observables are  $\mathcal{O}(a)$  improved [Frezzotti & Rossi '03]:
- ⇒ shown to work in practice for various observables in the quenched approximation [Jansen et al. '04-'05; Abdel-Rehim et al. '04-'05],
  - simplified pattern of operator mixing under renormalisation,

# • If $\omega = \pi/2$ (maximal twist) then ...

 $\mathcal{O}(a)$  Improvement

- observables are  $\mathcal{O}(a)$  improved [Frezzotti & Rossi '03]:
- ⇒ shown to work in practice for various observables in the quenched approximation [Jansen et al. '04-'05; Abdel-Rehim et al. '04-'05],
  - simplified pattern of operator mixing under renormalisation,
  - only one parameter  $\omega$  must be tuned,

- If  $\omega = \pi/2$  (maximal twist) then ...
  - observables are  $\mathcal{O}(a)$  improved [Frezzotti & Rossi '03]:
  - ⇒ shown to work in practice for various observables in the quenched approximation [Jansen et al. '04-'05; Abdel-Rehim et al. '04-'05],
    - simplified pattern of operator mixing under renormalisation,
    - only one parameter  $\omega$  must be tuned,
- but...

 $\mathcal{O}(a)$  Improvement

• parity and flavour symmetry are explicitly broken, the latter leading to  $m_{\rm PS}^{\pm} - m_{\rm PS}^{0}$  splitting.

Introduction Physics Results Outlook Lattice Formulation of QCD HMC Algorithm Wilson Twisted Mass Fermions

#### Idea of the Proof

$$\langle O(\mathbf{x}) \rangle^{\text{lat}} = \langle O(\mathbf{x}) \rangle^{\text{c}} - \mathbf{a} \int d\mathbf{y} \langle O(\mathbf{x}) \mathcal{L}_{1}(\mathbf{y}) \rangle^{\text{c}} + \mathbf{a} \sum_{k} \langle O_{k}(\mathbf{x}) \rangle^{\text{c}} + \mathcal{O}(\mathbf{a}^{2})$$

[Rossi, Frezzotti, Martinelli, Papinutto '05]

#### Idea of the Proof

$$\langle O(\mathbf{x}) \rangle^{\text{lat}} = \langle O(\mathbf{x}) \rangle^{\text{c}} - \mathbf{a} \int d\mathbf{y} \langle O(\mathbf{x}) \mathcal{L}_{1}(\mathbf{y}) \rangle^{\text{c}} + \mathbf{a} \sum_{k} \langle O_{k}(\mathbf{x}) \rangle^{\text{c}} + \mathcal{O}(\mathbf{a}^{2})$$

[Rossi, Frezzotti, Martinelli, Papinutto '05]

 r.h.s.: all expectation values with continuum action: operators must obey symmetries of cont. action

#### Idea of the Proof

$$\langle O(\mathbf{x}) \rangle^{\text{lat}} = \langle O(\mathbf{x}) \rangle^{\text{c}} - \mathbf{a} \int d\mathbf{y} \langle O(\mathbf{x}) \mathcal{L}_{1}(\mathbf{y}) \rangle^{\text{c}} + \mathbf{a} \sum_{k} \langle O_{k}(\mathbf{x}) \rangle^{\text{c}} + \mathcal{O}(\mathbf{a}^{2})$$

#### [Rossi, Frezzotti, Martinelli, Papinutto '05]

- r.h.s.: all expectation values with continuum action: operators must obey symmetries of cont. action
- all operators in the expansion must share lattice symmetries of O

$$\langle O(\mathbf{x}) \rangle^{\text{lat}} = \langle O(\mathbf{x}) \rangle^{\text{c}} - \mathbf{a} \int d\mathbf{y} \langle O(\mathbf{x}) \mathcal{L}_{1}(\mathbf{y}) \rangle^{\text{c}} + \mathbf{a} \sum_{k} \langle O_{k}(\mathbf{x}) \rangle^{\text{c}} + \mathcal{O}(\mathbf{a}^{2})$$

[Rossi, Frezzotti, Martinelli, Papinutto '05]

- r.h.s.: all expectation values with continuum action: operators must obey symmetries of cont. action
- all operators in the expansion must share lattice symmetries of O
- example: cont. symmetry modified Parity

$$\tilde{\mathcal{P}}: \qquad \begin{cases} \psi(\vec{x},t) & \to \gamma_0 \exp(i\omega\gamma_5\tau_3)\psi(-\vec{x},t) \\ \bar{\psi}(\vec{x},t) & \to \bar{\psi}(-\vec{x},t)\exp(i\omega\gamma_5\tau_3)\gamma_0 \end{cases}$$

$$\langle O(x) \rangle^{\text{lat}} = \langle O(x) \rangle^{\text{c}} - a \int dy \langle O(x) \mathcal{L}_1(y) \rangle^{\text{c}} + a \sum_k \langle O_k(x) \rangle^{\text{c}} + \mathcal{O}(a^2)$$

[Rossi, Frezzotti, Martinelli, Papinutto '05]

- r.h.s.: all expectation values with continuum action: operators must obey symmetries of cont. action
- all operators in the expansion must share lattice symmetries of O
- example: cont. symmetry modified Parity

$$\tilde{\mathcal{P}}: \qquad \begin{cases} \psi(\vec{x},t) & \to \gamma_0 \exp(i\omega\gamma_5\tau_3)\psi(-\vec{x},t) \\ \bar{\psi}(\vec{x},t) & \to \bar{\psi}(-\vec{x},t)\exp(i\omega\gamma_5\tau_3)\gamma_0 \end{cases}$$

 O must be even under *P*, *L*<sub>1</sub> is odd: term cancels in the expansion. Introduction Physics Results Outlook Uilson Twisted Mass Fermions Tuning to Maximal Twist

• Choose an operator O not invariant under  $\tilde{\mathcal{P}}$ ,



- Choose an operator O not invariant under  $\tilde{\mathcal{P}}$ ,
- tune *m*<sub>0</sub> such that O has vanishing expt. value at each lattice spacing and fixed physical situation,



#### **Tuning to Maximal Twist**

- Choose an operator O not invariant under  $\tilde{\mathcal{P}}$ ,
- tune *m*<sub>0</sub> such that O has vanishing expt. value at each lattice spacing and fixed physical situation,
- $\Rightarrow$  this guarantees  $\mathcal{O}(a)$  improvement, independently of the choice of O.



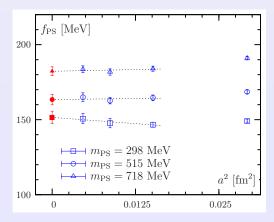
#### **Tuning to Maximal Twist**

- Choose an operator O not invariant under  $\tilde{\mathcal{P}}$ ,
- tune *m*<sub>0</sub> such that O has vanishing expt. value at each lattice spacing and fixed physical situation,
- ⇒ this guarantees O(a) improvement, independently of the choice of O.
  - Example:

$$m_{
m PCAC} \equiv rac{\langle \partial_\mu A^a_\mu(x) P^a(y) 
angle}{2 \langle P^a(x) P^a(y) 
angle} |_{m_{
m PS}=m_{
m ref}} = 0$$

with  $A^a_{\mu}$  and  $P^a$  the axial vector current and the pseudo-scalar density, respectively.

Introduction Physics Results Outlook Wilson Twisted Mass Fermions Test in Quenched Approximation of QCD



[Jansen et al., '05]

Introduction Setting the stage Physics Results Pion Sector Outlook Other Physics

#### Outline

### Introduction

- Lattice Formulation of QCD
- HMC Algorithm
- Wilson Twisted Mass Fermions

### 2 Physics Results

- Setting the stage
- Pion Sector
- Other Physics

## 3 Outlook



Members from many institutions all over Europe:

B. Blossier, Ph. Boucaud, P. Dimopoulos,
F. Farchioni, R. Frezzotti, V. Gimenez,
G. Herdoiza, K. Jansen, V. Lubicz,
G. Martinelli, C. McNeile, C. Michael,
I. Montvay, D. Palao, M. Papinutto,
O. Pène, J. Pickavance, G.C. Rossi,
L. Scorzato, A. Shindler, S. Simula,
C. Urbach, A. Vladikas, U. Wenger





### • $N_f = 2$ flavours of degenerate quarks, maximally twisted,



- $N_f = 2$  flavours of degenerate quarks, maximally twisted,
- lattice volumes of spatial extension larger than 2 fm,



- $N_f = 2$  flavours of degenerate quarks, maximally twisted,
- lattice volumes of spatial extension larger than 2 fm,
- lattice spacings of about 0.08 fm, 0.1 fm and 0.12 fm,



- $N_f = 2$  flavours of degenerate quarks, maximally twisted,
- lattice volumes of spatial extension larger than 2 fm,
- lattice spacings of about 0.08 fm, 0.1 fm and 0.12 fm,
- values of  $m_{\rm PS}$  between 250 and 600 MeV,

Set-up



- $N_f = 2$  flavours of degenerate quarks, maximally twisted,
- lattice volumes of spatial extension larger than 2 fm,
- lattice spacings of about 0.08 fm, 0.1 fm and 0.12 fm,
- values of  $m_{\rm PS}$  between 250 and 600 MeV,

Set-up

• algorithm: HMC with Hasenbusch preconditioning and multiple time scales [Jansen, Shindler, Urbach, U.W. '04],



- $N_f = 2$  flavours of degenerate quarks, maximally twisted,
- lattice volumes of spatial extension larger than 2 fm,
- lattice spacings of about 0.08 fm, 0.1 fm and 0.12 fm,
- values of  $m_{\rm PS}$  between 250 and 600 MeV,

Set-up

- algorithm: HMC with Hasenbusch preconditioning and multiple time scales [Jansen, Shindler, Urbach, U.W. '04],
- gauge action: treelevel Symanzik improved [Weisz '83].

|                                           | ntroduction<br>ics Results<br>Outlook | Setting the stage<br>Pion Sector<br>Other Physics |  |
|-------------------------------------------|---------------------------------------|---------------------------------------------------|--|
| $\beta = 3.90, a \approx 0.09 \text{ fm}$ |                                       |                                                   |  |

| $\pmb{a}\mu$ | $L^3 	imes T$           | m <sub>PS</sub> [MeV] | N <sub>traj</sub> |
|--------------|-------------------------|-----------------------|-------------------|
| 0.0040       | $24^3 	imes 48$         | 280                   | 5000              |
| 0.0064       | $\mathbf{24^3}\times48$ | 350                   | 5000              |
| 0.0085       | $\mathbf{24^3}\times48$ | 390                   | 5000              |
| 0.0100       | $24^3 	imes 48$         | 430                   | 5000              |
| 0.0150       | $\mathbf{24^3}\times48$ | 510                   | 5000              |
| 0.0040       | $24^3 	imes 32$         | 280                   | 5000              |
| 0.0040       | $20^3 	imes 48$         | -                     | 17                |
| 0.0040       | $32^3 	imes 64$         | 280                   | 5000              |

| Introduction                                      | Setting the stage |
|---------------------------------------------------|-------------------|
| Physics Results                                   | Pion Sector       |
| Outlook                                           | Other Physics     |
| $\beta =$ 4.05, $a \approx$ 0.07 fm (preliminary) |                   |

| $\pmb{a}\mu$ | $L^3 	imes T$   | m <sub>PS</sub> [MeV] | N <sub>traj</sub> |
|--------------|-----------------|-----------------------|-------------------|
| 0.003        | $32^3 	imes 64$ | 270                   | 5000              |
| 0.006        | $32^3 	imes 64$ | 370                   | 5000              |
| 0.008        | $32^3 	imes 64$ | -                     | 3000              |
| 0.012        | $32^3 	imes 64$ | 520                   | 3000              |

| Introduction                              | Setting the stage |
|-------------------------------------------|-------------------|
| Physics Results                           | Pion Sector       |
| Outlook                                   | Other Physics     |
| eta= 3.80, $approx$ 0.12 fm (preliminary) |                   |

| $\overline{a}\mu$ | $L^3 	imes T$   | m <sub>PS</sub> [MeV] | N <sub>traj</sub> |
|-------------------|-----------------|-----------------------|-------------------|
| 0.006             | $20^3 	imes 48$ | -                     |                   |
| 0.009             | $20^3 	imes 48$ | -                     |                   |
| 0.012             | $20^3 	imes 48$ | -                     |                   |
| 0.015             | $20^3 	imes 48$ | -                     |                   |

 $\Rightarrow \text{Tuning is ongoing...}$ 



#### Machines

- Many massively parallel machines throughout Europe:
  - IBM p960 Regatta and BlueGene/L at FZ-Jülich,
  - apeNEXT at DESY Zeuthen and Rome,
  - MareNostrum in Valencia,
  - QCDOC in Edinburgh,
  - Altix system at LRZ Munich (pending),
  - local PC-clusters and -farms, etc.

Introduction Physics Results Outlook Setting the stage Pion Sector Other Physics





Urs Wenger Lattice QCD with light quarks

|                         | Introduction<br>Physics Results<br>Outlook | Setting the stage<br>Pion Sector<br>Other Physics |  |
|-------------------------|--------------------------------------------|---------------------------------------------------|--|
| Tuning to Maximal Twist |                                            |                                                   |  |

- Many different choices are possible:
  - choose an operator odd under parity (in the physical basis) and vanishing in the continuum,
  - at finite a tune its v.e.v. to zero by adjusting am<sub>0</sub>.



#### **Tuning to Maximal Twist**

- Many different choices are possible:
  - choose an operator odd under parity (in the physical basis) and vanishing in the continuum,
  - at finite a tune its v.e.v. to zero by adjusting am<sub>0</sub>.

We tune

$$m_{\text{PCAC}} = \frac{\sum_{\mathbf{x}} \langle \partial_0 A_0^a(\mathbf{x}) P^a(0) \rangle}{2 \sum_{\mathbf{x}} \langle \partial_0 P^a(\mathbf{x}) P^a(0) \rangle} = 0, \quad a = 1, 2$$

at  $a\mu_{\min}$ .



#### **Tuning to Maximal Twist**

- Many different choices are possible:
  - choose an operator odd under parity (in the physical basis) and vanishing in the continuum,
  - at finite a tune its v.e.v. to zero by adjusting am<sub>0</sub>.

We tune

$$m_{\text{PCAC}} = \frac{\sum_{\mathbf{x}} \langle \partial_0 A_0^a(\mathbf{x}) P^a(0) \rangle}{2 \sum_{\mathbf{x}} \langle \partial_0 P^a(\mathbf{x}) P^a(0) \rangle} = 0, \quad a = 1, 2$$

at  $a\mu_{\min}$ .

 Involves at each value of a several (expensive) tuning simulations.



#### **Tuning to Maximal Twist**

- Many different choices are possible:
  - choose an operator odd under parity (in the physical basis) and vanishing in the continuum,
  - at finite *a* tune its v.e.v. to zero by adjusting *am*<sub>0</sub>.

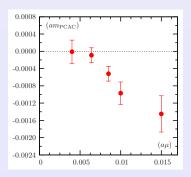
We tune

$$m_{\text{PCAC}} = \frac{\sum_{\mathbf{x}} \langle \partial_0 A_0^a(\mathbf{x}) P^a(0) \rangle}{2 \sum_{\mathbf{x}} \langle \partial_0 P^a(\mathbf{x}) P^a(0) \rangle} = 0, \quad a = 1, 2$$

at  $a\mu_{\min}$ .

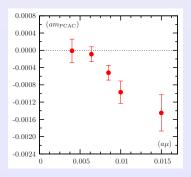
- Involves at each value of a several (expensive) tuning simulations.
- It was not obvious at the beginning that this tuning is feasible!





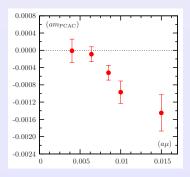
 needs to be done on the target lattice volume,





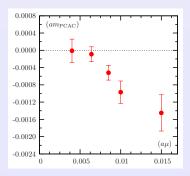
- needs to be done on the target lattice volume,
- at  $\beta = 3.90$  and  $\beta = 4.05$  the PCAC mass is zero within errors at  $\mu_{\min}$ ,





- needs to be done on the target lattice volume,
- at  $\beta = 3.90$  and  $\beta = 4.05$  the PCAC mass is zero within errors at  $\mu_{\min}$ ,
- we see deviations for the other μ-values (as expected),





- needs to be done on the target lattice volume,
- at  $\beta$  = 3.90 and  $\beta$  = 4.05 the PCAC mass is zero within errors at  $\mu_{\min}$ ,
- we see deviations for the other μ-values (as expected),
- μ-dependence is a O(a) cut-off effect modifying the O(a<sup>2</sup>) artefacts in physical obervables.



• Lattice spacing *a* is the only dimensionful quantity in the game,



Setting the Scale

- Lattice spacing *a* is the only dimensionful quantity in the game,
- so the translation to physical units needs some input, e.g. a meson mass, decay constant, etc.



Setting the Scale

- Lattice spacing *a* is the only dimensionful quantity in the game,
- so the translation to physical units needs some input, e.g. a meson mass, decay constant, etc.
- One possibility is the Sommer parameter r<sub>0</sub>, defined via the force between two static quarks [Sommer '94]

$$r^{2}F(r)|_{r=r(c)} = c$$
,  $r_{0} = r(1.65)$ 



- Lattice spacing *a* is the only dimensionful quantity in the game,
- so the translation to physical units needs some input, e.g. a meson mass, decay constant, etc.
- One possibility is the Sommer parameter r<sub>0</sub>, defined via the force between two static quarks [Sommer '94]

$$r^{2}F(r)|_{r=r(c)}=c$$
,  $r_{0}=r(1.65)$ 

•  $r_0/a$  can be measured with high accuracy

Setting the Scale



- Lattice spacing *a* is the only dimensionful quantity in the game,
- so the translation to physical units needs some input, e.g. a meson mass, decay constant, etc.
- One possibility is the Sommer parameter r<sub>0</sub>, defined via the force between two static quarks [Sommer '94]

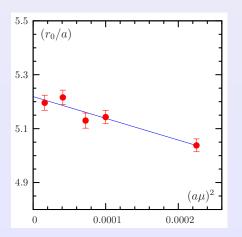
$$r^{2}F(r)|_{r=r(c)}=c$$
,  $r_{0}=r(1.65)$ 

•  $r_0/a$  can be measured with high accuracy

Setting the Scale

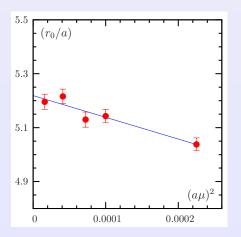
•  $r_0 \approx 0.5 \text{fm}$  is only known approximately.





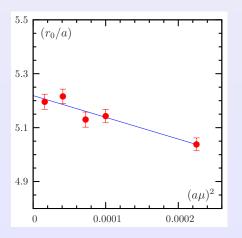
• Sommer parameter  $r_0$  at  $\beta = 3.90$ :





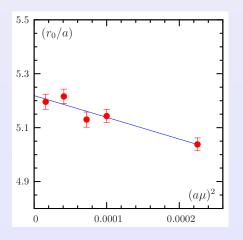
- Sommer parameter  $r_0$  at  $\beta = 3.90$ :
- accuracy of less than 0.5%,
- depends on (*aµ*)<sup>2</sup>, as expected,





- Sommer parameter  $r_0$  at  $\beta = 3.90$ :
- accuracy of less than 0.5%,
- depends on (*aµ*)<sup>2</sup>, as expected,
- dependence is rather weak.





- Sommer parameter  $r_0$  at  $\beta = 3.90$ :
- accuracy of less than 0.5%,
- depends on (*aµ*)<sup>2</sup>, as expected,
- dependence is rather weak.
- $\Rightarrow r_0/a = 5.22(2)$  at the physical point.



*m*<sub>PS</sub> from exponential decay of appropriate correlation functions



- *m*<sub>PS</sub> from exponential decay of appropriate correlation functions
- f<sub>PS</sub> can be extracted at maximal twist from

$$f_{
m PS}=rac{2\mu}{m_{
m PS}^2}|\langle 0| {m P}^1(0)|\pi
angle|$$

due to an exact lattice Ward identity [Frezzotti, Grassi, Sint, Weisz '01].



- *m*<sub>PS</sub> from exponential decay of appropriate correlation functions
- f<sub>PS</sub> can be extracted at maximal twist from

$$f_{
m PS}=rac{2\mu}{m_{
m PS}^2}|\langle 0| {m P}^1(0)|\pi
angle|$$

due to an exact lattice Ward identity [Frezzotti, Grassi, Sint, Weisz '01].

- No renormalisation factor needed!
  - since  $Z_{\mu} = 1/Z_P$
  - similar to overlap fermions (exact chiral symmetry)
  - unlike pure Wilson



• Describe mass and L dependence with  $N_f = 2 \chi PT$  at NLO

[Gasser, Leutwyler '87; Colangelo, Dürr, Haefeli '05]

$$m_{\rm PS}^2 = 2B_0\mu \left[1 + \frac{1}{2}\xi \,\tilde{g}_1(\lambda)\right]^2 \left[1 + \xi \log(2B_0\mu/\Lambda_3^2)\right]$$
  
$$f_{\rm PS} = F_0 \left[1 - \xi \,\tilde{g}_1(\lambda)\right] \left[1 - 2\xi \log(2B_0\mu/\Lambda_4^2)\right]$$

with  $\xi = 2B_0\mu/(2\pi F_0)^2$ ,  $\lambda = \sqrt{2B_0\mu L^2}$  and  $\tilde{g}_1(\lambda)$  is a known function.



• Describe mass and L dependence with  $N_f = 2 \chi PT$  at NLO

[Gasser, Leutwyler '87; Colangelo, Dürr, Haefeli '05]

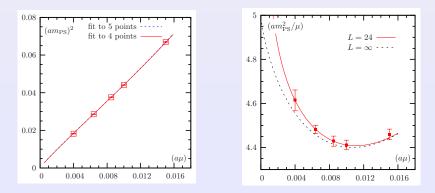
$$m_{\rm PS}^2 = 2B_0\mu \left[1 + \frac{1}{2}\xi \,\tilde{g}_1(\lambda)\right]^2 \left[1 + \xi \log(2B_0\mu/\Lambda_3^2)\right]$$
  
$$f_{\rm PS} = F_0 \left[1 - \xi \,\tilde{g}_1(\lambda)\right] \left[1 - 2\xi \log(2B_0\mu/\Lambda_4^2)\right]$$

with  $\xi = 2B_0\mu/(2\pi F_0)^2$ ,  $\lambda = \sqrt{2B_0\mu L^2}$  and  $\tilde{g}_1(\lambda)$  is a known function.

 Fit simultaneously to our data: fit parameters B<sub>0</sub>, F<sub>0</sub>, log Λ<sub>3</sub><sup>2</sup>, log Λ<sub>4</sub><sup>2</sup>



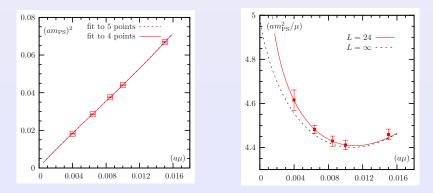
## Pion Sector: $m_{\rm PS}$ at $\beta = 3.9$



excellent description by chiral perturbation theory,



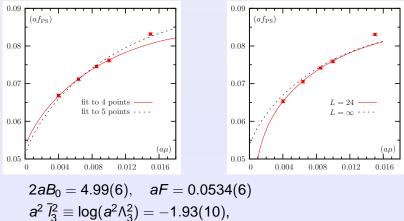
## Pion Sector: $m_{\rm PS}$ at $\beta = 3.9$



- excellent description by chiral perturbation theory,
- sensitivity to  $\Lambda_3$  exposed.

#### Introduction Setting the stage Physics Results Pion Sector Outlook Other Physics

## Pion Sector: $f_{PS}$ at $\beta = 3.9$





• determination of  $\bar{l}_{3,4} \equiv \log(\Lambda_{3,4}/m_{\pi})$ :

$$ar{l}_3 ~=~ 3.65 \pm 0.12, \qquad ar{l}_4 ~=~ 4.52 \pm 0.06$$
  
 $F_0 ~=~ 121.3(7)~{
m MeV}$ 



• determination of 
$$\bar{l}_{3,4} \equiv \log(\Lambda_{3,4}/m_{\pi})$$
:

$$ar{l}_3 \ = \ 3.65 \pm 0.12, \qquad ar{l}_4 \ = \ 4.52 \pm 0.06$$
 $F_0 \ = 121.3(7) \ {
m MeV}$ 

• from  $\bar{l}_4$  follows the radius of the scalar pion form factor:

$$< r^2 >_s = 0.637 \pm 0.026 \; {\rm fm}^2$$



• determination of 
$$\bar{l}_{3,4} \equiv \log(\Lambda_{3,4}/m_{\pi})$$
:

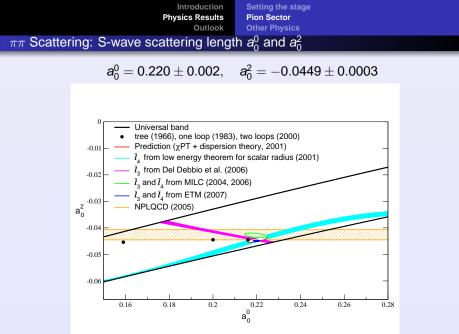
$$ar{l}_3 ~=~ 3.65 \pm 0.12, \qquad ar{l}_4 ~=~ 4.52 \pm 0.06$$
  
 $F_0 ~=~ 121.3(7)~{
m MeV}$ 

• from  $\bar{l}_4$  follows the radius of the scalar pion form factor:

$$< r^2 >_s = 0.637 \pm 0.026 \ {
m fm}^2$$

• determine the lattice spacing with  $f_{\pi} = 130.7 \text{ MeV}$ 

$$a = 0.087(1) \text{ fm} \quad \Rightarrow \quad r_0 = 0.454(7) \text{ fm}$$



[Leutwyler priv., cf. hep-ph/0612112]



Note: all errors are statistical only!

• we are assuming that lattice artifacts are negligible

All this needs to be checked!



Note: all errors are statistical only!

**Pion-Sector** 

- we are assuming that lattice artifacts are negligible
- we are assuming that NLO  $\chi {\rm PT}$  is sufficient to describe the mass dependence

All this needs to be checked!



**Pion-Sector** 

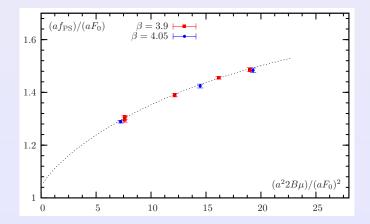
Note: all errors are statistical only!

- we are assuming that lattice artifacts are negligible
- we are assuming that NLO  $\chi {\rm PT}$  is sufficient to describe the mass dependence
- we are assuming that finite size effects are correctly described by  $\chi {\rm PT}$  to that order

All this needs to be checked!



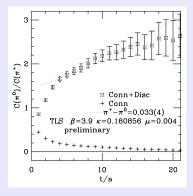
Combined fit of two lattice spacings:



Lattice artefacts seem to be very small!



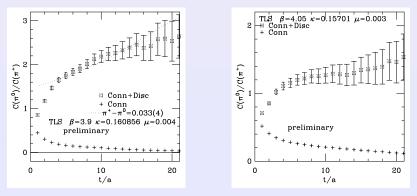
At finite lattice spacing flavour symmetry is broken at  $\mathcal{O}(a^2)$ :



- Isospin is broken at a > 0,
- strongest for  $m_{PS}^+ m_{PS}^0$ ,
- breaking vanishes as  $m_{\rm PS}^+ m_{\rm PS}^0 = c_2 a^2$ ,
- $\Delta \equiv (m_{
  m PS}^+ m_{
  m PS}^0)/m_{
  m PS}^+ \sim 25\%$



# At finite lattice spacing flavour symmetry is broken at $O(a^2)$ :



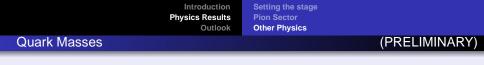
• at  $\beta$  = 3.90: splitting 25% of charged  $m_{PS}$ 

• at  $\beta = 4.05$ : splitting 10% of charged  $m_{\rm PS}$ 



### Pion Mass Splitting

- Neutral pion lighter than charged:
  - this is consistent with prediction from  $\chi {\rm PT}$ ,
  - problems for FS correction formula?
- Pion splitting decreases with a<sup>2</sup> as expected,
- disconnected contribution in  $\pi^0$  is large and reduces the difference.
- Compared to quenched the effect is strongly reduced.



• Prime example for lattice calculations.



- Prime example for lattice calculations.
- Estimates of quark masses:

 $m_{u,d}(\overline{\text{MS}}, 2 \text{ GeV}) = 4.1(2) \text{ MeV}$  $m_s(\overline{\text{MS}}, 2 \text{ GeV}) = 115(2) \text{ MeV}$  $m_c(\overline{\text{MS}}, 2 \text{ GeV}) = 1.4(1) \text{ GeV}$ 



- Prime example for lattice calculations.
- Estimates of quark masses:

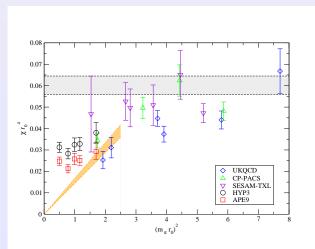
 $m_{u,d}(\overline{\text{MS}}, 2 \text{ GeV}) = 4.1(2) \text{ MeV}$  $m_s(\overline{\text{MS}}, 2 \text{ GeV}) = 115(2) \text{ MeV}$  $m_c(\overline{\text{MS}}, 2 \text{ GeV}) = 1.4(1) \text{ GeV}$ 

 as a first attempt: used renormalisation constants of bilinear quark operators from RI-MOM Introduction Set Physics Results Pio Outlook Oth

Setting the stage Pion Sector Other Physics

(PRELIMINARY)

## Topological susceptibility



Urs Wenger Lattice QCD with light quarks

Introduction Physics Results Outlook

## The cake is prepared...



Urs Wenger Lattice QCD with light quarks



- Other mesons: *ρ*, *a*<sub>0</sub>, *b*<sub>1</sub>, . . .,
- Pion form factors:  $F_{S,V}$ ,
- Baryons:  $N, P, \Delta^+, \Delta^{++}, \dots$
- charm sector:  $f_{\rm D}$ ,  $m_{\rm Ds}/m_{\rm D}$ ,
- string breaking, ρ-decay,
- topological susceptibility,
- Adler function:  $g 2, \alpha_s$ ,



# • With twisted mass $N_f = 2 + 1 + 1$ flavours are possible

[Frezzotti & Rossi '03]



- With twisted mass  $N_f = 2 + 1 + 1$  flavours are possible [Frezzotti & Rossi '03]
- $\mathcal{O}(a)$  improvement at maximal twist



- With twisted mass  $N_f = 2 + 1 + 1$  flavours are possible [Frezzotti & Rossi '03]
- $\mathcal{O}(a)$  improvement at maximal twist
- algorithms are ready [Montvay & Scholz '05; Chiarappa, Frezzotti, Urbach '05]



- With twisted mass  $N_f = 2 + 1 + 1$  flavours are possible [Frezzotti & Rossi '03]
- $\mathcal{O}(a)$  improvement at maximal twist
- algorithms are ready [Montvay & Scholz '05; Chiarappa, Frezzotti, Urbach '05]
- exploratory studies have been performed [Chiarappa et al., '06]



- With twisted mass  $N_f = 2 + 1 + 1$  flavours are possible [Frezzotti & Rossi '03]
- $\mathcal{O}(a)$  improvement at maximal twist
- algorithms are ready [Montvay & Scholz '05; Chiarappa, Frezzotti, Urbach '05]
- exploratory studies have been performed [Chiarappa et al., '06]
  - tuning possible



- We have a sound set-up:
  - O(a) improvement with maximally twisted mass fermions,
  - highly tuned algorithms available,

### Conclusion

- We have a sound set-up:
  - O(a) improvement with maximally twisted mass fermions,
  - highly tuned algorithms available,
- First physics results with light quarks on fine lattices:
  - $m_{\rm PS}$  as light as 280 MeV,
  - lattice spacings  $\lesssim 0.1~{\rm fm},$
  - volumes larger 2 fm,
  - stable simulations,
  - lattice artifacts seem to be small.

### Outlook

- Simulate larger volumes and check for finite size effects,
- continuum extrapolation,
- mixed action approach: Neuberger fermions in the valence sector → e.g. B<sub>K</sub>,
- long term objective: 2 + 1 + 1 flavours of quarks.