High-precision QED initial state corrections for $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \gamma^{*} / Z^{*}$ annihilation

Trento Workshop, 2022
Johannes Blümlein | July 18, 2022

DESY
in collaboration with: J. Ablinger, A. De Freitas, C. Raab and K. Schönwald
[based on: Blümlein, De Freitas, van Neerven, (Nucl. Phys. B 855 (2012) 508-569)]
[Blümlein, De Freitas, Raab, Schönwald (Phys. Lett. B701 (2019) 206-209, Phys. Lett. B801 (2021)
135196, Nucl. Phys. B 956 (2020) 115055)]
[Ablinger, Blümlein, De Freitas, Schönwald (Nucl. Phys. B955 (2020) 115045)]
[Blümlein, De Freitas, Schönwald (Phys. Lett. B816 (2021) 136250)]

Outline

(1) Motivation
(2) The Method of Massive Operator Matrix Elements
(3) Results for the Total Cross-Section
4. Results for the Forward-Backward Asymmetry
(5) Conclusions

Motivation

- Corrections due to initial state radiation (ISR) can be large, especially due to large logarithmic corrections

$$
L=\ln \left(s / m_{e}^{2}\right) \approx 10
$$

- These corrections are important e.g.
- for the prediction of the Z-boson peak
- for $t \bar{t}$ production
- associated Higgs production through $e^{+} e^{-} \rightarrow Z^{*} H^{0}$ at future $e^{+} e^{-}$colliders.
- We extend the known $O\left(\alpha^{2}\right)$ ISR corrections up to $O\left(\alpha^{6} L^{5}\right)$, including the first three subleading logarithmic
 corrections at lower orders.
- We extend the ISR corrections for the forward-backward asvmmetry at leadina loaarithmic order to $O\left(\alpha^{6} L^{6}\right)$.

Previous Calculations

- 1988: First calculation to $O\left(\alpha^{2}\right)$ for the LEP analysis, through expansion of the phase space integrals (BBN).
[Berends, Burgers, van Neerven (Nucl. Phys. B297 (1988))]
- 2012: New calculation up to $O\left(\alpha^{2}\right)$ using the method of massive operator matrix elements. [Blümlein, De Freitas, van Neerven (Nucl Phys. B855 (2012))]
\Rightarrow Calculations do not agree at $O\left(\alpha^{2} L^{0}\right)$!
- Errors in one of the calculations?
- Breakdown of factorization?
- We revisited the original calculation, doing the expansion in m_{e} at the latest stage.
[Blümlein, De Freitas, Raab, Schönwald (Nucl. Phys. B956 (2020))]

Result: Process II

- as an example we find the difference term to BBN for process II:

$$
\begin{aligned}
\delta_{/ I} & =\frac{8}{3} \int_{0}^{1} \frac{\mathrm{~d} y}{y} \sqrt{1-y}(2+y)\left[\frac{(1-z)(1-(4-z) z) y}{4 z+\left(1-z^{2}\right) y}-\frac{1+z^{2}}{1-z} \ln \left(1+\frac{(1-z)^{2} y}{4 z}\right)\right] \\
& =-\frac{128}{9}\left[3+\frac{1}{(1-z)^{3}}-\frac{2}{(1-z)^{2}}-2 z\right]-16\left[1+\frac{5 z}{3}+\frac{8}{9} \frac{1}{(1-z)^{4}}-\frac{20}{9} \frac{1}{(1-z)^{3}}\right. \\
& \left.+\frac{4}{9} \frac{1}{(1-z)^{2}}\right] \ln (z)+\frac{8}{3} \frac{1+z^{2}}{1-z}\left[\frac{10}{9}-\frac{14}{3} \ln (z)-\ln ^{2}(z)\right]
\end{aligned}
$$

- in this case the difference can be attributed to the neglection of initial state electron masses
- in the pure-singlet process a calculation done for massless partons was reused
[Schellekens, van Neerven (Phys.Rev. D21 (1980))]
\Rightarrow our results agree with the ones obtained using massive OMEs

Recalculation - Numerical Illustration

- Relative deviation from BBN of process II (red), process III (blue) and process IV (magenta) contribution in \%.

The Method of Massive Operator Matrix Elements

The initial state radiation factorizes from the born cross section:

$$
\frac{\mathrm{d} \sigma_{i j}}{\mathrm{~d} s^{\prime}}=\frac{\sigma^{(0)}\left(s^{\prime}\right)}{s} \sum_{l, k} \Gamma_{l i}\left(z, \frac{\mu^{2}}{m_{e}^{2}}\right) \otimes \tilde{\sigma}_{l k}\left(z, \frac{s^{\prime}}{\mu^{2}}\right) \otimes \Gamma_{k j}\left(z, \frac{\mu^{2}}{m_{e}^{2}}\right)+O\left(\frac{m_{e}^{2}}{s}\right)=\frac{\sigma^{(0)}\left(s^{\prime}\right)}{s} H_{i j}\left(z, \frac{s}{m_{e}^{2}}\right)
$$

with $z=s^{\prime} / s, \mu$ the factorization scale, into:

$$
\left[f(z) \otimes g(z)=\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1} \mathrm{~d} x_{2} f\left(x_{1}\right) g\left(x_{2}\right) \delta\left(z-x_{1} x_{2}\right), f(N)=\int_{0}^{1} \mathrm{~d} z z^{N-1} f(z)\right]
$$

- massless (Drell-Yan) cross sections $\tilde{\sigma}_{i j}\left(z, \frac{s^{\prime}}{\mu^{2}}\right)$
[Hamberg, van Neerven, Matsuura (Nucl. Phys. B 359 (1991))]
[Harlander, Kilgore (Phys. Rev. Lett. 88 (2002))]
[Duhr, Dulat, Mistelberger (Phys. Rev. Lett. 125 (2020))]
- massive operator matrix elements $\Gamma_{i j}\left(z, \frac{\mu^{2}}{m_{e}^{2}}\right)$, which carry all mass dependence [Blümlein, De Freitas, van Neerven (Nucl Phys. B855 (2012))]

The Method of Massive Operator Matrix Elements

The initial state radiation factorizes from the born cross section:

$$
\frac{\mathrm{d} \sigma_{i j}}{\mathrm{~d} s^{\prime}}=\frac{\sigma^{(0)}\left(s^{\prime}\right)}{s} \sum_{l, k} \Gamma_{l i}\left(N, \frac{\mu^{2}}{m_{e}^{2}}\right) \cdot \tilde{\sigma}_{l k}\left(N, \frac{s^{\prime}}{\mu^{2}}\right) \cdot \Gamma_{k j}\left(N, \frac{\mu^{2}}{m_{e}^{2}}\right)+O\left(\frac{m_{e}^{2}}{s}\right)=\frac{\sigma^{(0)}\left(s^{\prime}\right)}{s} H_{i j}\left(N, \frac{s}{m_{e}^{2}}\right)
$$

with $z=s^{\prime} / s, \mu$ the factorization scale, into:

$$
\left[f(z) \otimes g(z)=\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1} \mathrm{~d} x_{2} f\left(x_{1}\right) g\left(x_{2}\right) \delta\left(z-x_{1} x_{2}\right), f(N)=\int_{0}^{1} \mathrm{~d} z z^{N-1} f(z)\right]
$$

- massless (Drell-Yan) cross sections $\tilde{\sigma}_{i j}\left(z, \frac{s^{\prime}}{\mu^{2}}\right)$
[Hamberg, van Neerven, Matsuura (Nucl. Phys. B 359 (1991))]
[Harlander, Kilgore (Phys. Rev. Lett. 88 (2002))]
[Duhr, Dulat, Mistelberger (Phys. Rev. Lett. 125 (2020))]
- massive operator matrix elements $\Gamma_{i j}\left(z, \frac{\mu^{2}}{m_{e}^{2}}\right)$, which carry all mass dependence [Blümlein, De Freitas, van Neerven (Nucl Phys. B855 (2012))]

The Method of Massive Operator Matrix Elements

Massless cross sections and massive operator matrix elements obey renormalization group equations:

- massless cross sections $\tilde{\sigma}_{i j}$

$$
\left[\left(\frac{\partial}{\partial \lambda}-\beta(a) \frac{\partial}{\partial a}\right) \delta_{k l} \delta_{j m}+\frac{1}{2} \gamma_{k l}(N) \delta_{j m}+\frac{1}{2} \gamma_{j m}(N) \delta_{k l}\right] \tilde{\sigma}_{l j}(N)=0
$$

- massive operator matrix elements $\Gamma_{i j}$

$$
\left[\left(\frac{\partial}{\partial \Lambda}+\beta(a) \frac{\partial}{\partial a}\right) \delta_{j l}+\frac{1}{2} \gamma_{k l}(N)\right] \Gamma_{l i}(N)=0
$$

with $\lambda=\ln \left(s^{\prime} / \mu^{2}\right), \Lambda=\ln \left(\mu^{2} / m_{e}^{2}\right)$, the QED β-function $\beta(a)$ and $a=\alpha /(4 \pi)$

- Here the usual anomalous dimensions, i.e. Mellin transforms of the splitting functions, contribute:

$$
\gamma_{i j}(N)=-\int_{0}^{1} \mathrm{~d} z z^{N-1} P_{i j}(z)
$$

The Method of Massive Operator Matrix Elements

$$
\frac{\mathrm{d} \sigma_{e^{+} e^{-}}}{\mathrm{d} s^{\prime}}=\frac{\sigma^{(0)}\left(s^{\prime}\right)}{s} H_{e^{+} e^{-}}(z, L)=\frac{\sigma^{(0)}\left(s^{\prime}\right)}{s} \sum_{i=0}^{\infty} \sum_{k=0}^{i} a^{i} L^{k} c_{i, k}
$$

The radiators:

$$
\begin{aligned}
c_{1,1} & =-\gamma_{e e}^{(0)}, \\
c_{1,0} & =\tilde{\sigma}_{e e}^{(0)}+2 \Gamma_{e e}^{(0)}, \\
c_{2,2} & =\frac{1}{2} \gamma_{e e}^{(0) 2}+\frac{\beta_{0}}{2} \gamma_{e e}^{(0)}+\frac{1}{4} \gamma_{e \gamma}^{(0)} \gamma_{\gamma e}^{(0)}, \\
& \ldots \\
c_{3,1} & =-\gamma_{e e}^{(2)}-2 \Gamma_{e e}^{(0)} \gamma_{e e}^{(1)}-\Gamma_{e e}^{(0)} \gamma_{e \gamma}^{(0)} \Gamma_{\gamma e}^{(0)}-\gamma_{e \gamma}^{(1)} \Gamma_{\gamma e}^{(0)}-\gamma_{e \gamma}^{(0)} \Gamma_{\gamma e}^{(1)}-\beta_{1} \tilde{\sigma}_{e e}^{(0)}-\gamma_{e e}^{(1)} \tilde{\sigma}_{e e}^{(0)} \\
& -\gamma_{e \gamma}^{(0)} \Gamma_{\gamma e}^{(0)} \tilde{\sigma}_{e e}^{(0)}-2 \Gamma_{e e}^{(0)} \gamma_{\gamma e}^{(0)} \tilde{\sigma}_{e \gamma}^{(0)}-\gamma_{\gamma e}^{(1)} \tilde{\sigma}_{e \gamma}^{(0)}-\Gamma_{\gamma e}^{(0)} \gamma_{\gamma \gamma}^{(0)} \tilde{\sigma}_{e \gamma}^{(0)}-\gamma_{\gamma e}^{(0)} \tilde{\sigma}_{\gamma e}^{(1)}+\beta_{0}\left[-2 \Gamma_{e e}^{(0)} \tilde{\sigma}_{e e}^{(0)}\right. \\
& \left.-2 \tilde{\sigma}_{e e}^{(1)}-2 \Gamma_{\gamma e}^{(0)} \tilde{\sigma}_{e \gamma}^{(0)}\right]-\gamma_{e e}^{(0)}\left[\Gamma_{e e}^{(0) 2}+2 \Gamma_{e e}^{(1)}+2 \Gamma_{e e}^{(0)} \tilde{\sigma}_{e e}^{(0)}+\tilde{\sigma}_{e e}^{(1)}+\Gamma_{\gamma e}^{(0)} \tilde{\sigma}_{e \gamma}^{(0)}\right],
\end{aligned}
$$

For the first three logarithmic orders we need the following ingredients:

- splitting functions $\gamma_{i j}$ up to three-loop order
[E.G. Floratos, D.A. Ross, C.T. Sachrajda (Nucl. Phys. B129 (1977))]
[A. Gonzalez-Arroyo, C. Lopez, F.J. Yndurain (Nucl. Phys. B153 (1979))]
...
[S. Moch, J. Vermaseren, A. Vogt (Nucl.Phys.B 688/691 (2004))]
[J. Blümlein, P. Marquard, K. Schönwald, C. Schneider (Nucl.Phys.B 971 (2021))]
- massless (Drell-Yan) cross sections $\tilde{\sigma}_{i j}$ up to two-loop order
[Hamberg, van Neerven, Matsuura (Nucl. Phys. B 359 (1991))]
[Harlander, Kilgore (Phys. Rev. Lett. 88 (2002))]
- massive operator matrix elements $\Gamma_{i j}$ up to two-loop order ${ }^{1}$
[Blümlein, De Freitas, van Neerven (Nucl. Phys. B855 (2012))]
$\Rightarrow \Gamma_{\gamma e}$ was only considered up to one-loop order

[^0]
The Missing Operator Matrix Element $\Gamma_{\gamma e}$

$\not \Delta(\Delta . p)^{N-1}$

$$
\Gamma_{e^{+} e^{+}}=\Gamma_{e^{-} e^{-}}=\langle e| O_{F}^{\mathrm{NS}, \mathrm{~S}}|e\rangle,
$$

$$
\Gamma_{e^{+} \gamma}=\Gamma_{e^{-} \gamma}=\langle\gamma| O_{F}^{S}|\gamma\rangle
$$

$$
\Gamma_{\gamma e^{+}}=\Gamma_{\gamma e^{-}}=\langle e| O_{V}^{S}|e\rangle
$$

$\frac{1+(-1)^{N}}{2}(\Delta . p)^{N-2}\left[g_{\mu \nu}(\Delta . p)^{2}-\left(\Delta_{\mu} p_{\nu}+\Delta_{\nu} p_{\mu}\right) \Delta . p+p^{2} \Delta_{\mu} \Delta_{\nu}\right]$

- The technique has been used to derive deep-inelastic scattering (DIS) structure functions in the asymptotic limit $Q^{2} \gg m^{2}$ up to $O\left(\alpha_{s}^{3}\right)$.
- In the context of DIS proven to work at α_{s}^{2} in the
- non-singlet process
[Buza, Matiounine, Smith, van Neerven (Nucl.Phys. B485 (1997))
Blümlein, Falcioni, De Freitas (Nucl.Phys. B910 (2016))]
- pure-singlet process
[Blümlein, De Freitas, Raab, Schönwald (Nucl.Phys. B945 (2019))]

The Missing Operator Matrix Element $\Gamma_{\gamma e}$

- We have to compute on-shell 2-point functions with local operator insertions $\left(\Delta^{2}=0\right)$.
- The operator can be resummed into a propagator like term:

$$
\sum_{N=0}^{\infty} t^{N}(\Delta . k)^{N}=\frac{1}{1-t \Delta . k} .
$$

- The calculation can now follow standard techniques:
- Integration-By-Parts reduction to master integrals.
- Calculation of the master integrals via differential equations in the resummation variable t.
- We find the Mellin-space expression by symbolically computing the N-th derivative.
- For the calculations we make use of the packages Sigma [C. Schneider (Sem. Lothar. Combin. 56 (2007))] and HarmonicSums [J. Ablinger et al. (arXiv:1011.1176)] .

The Missing Operator Matrix Element $\Gamma_{\gamma e}$

$$
\begin{aligned}
\Gamma_{\gamma e}^{(1)}(N) & =\frac{P_{8}}{27(N-4)(N-3)(N-2)(N-1) N^{4}(N+1)^{4}}+\left(\frac{2 P_{7}}{9(N-4)(N-3)(N-2)(N-1) N^{3}(N+1)^{3}}+\frac{2\left(N N^{2}+N+2\right)}{(N-1) N(N+1)} S_{2}\right) S_{1} \\
& +\frac{P_{3}}{3(N-2)(N-1) N(N+1)^{2}} S_{1}^{2}+\frac{2\left(N^{2}+N+2\right)}{3(N-1) N(N+1)} S_{1}^{3}+\frac{P_{6}}{3(N-2)(N-1) N^{2}(N+1)^{2}} S_{2}+\frac{4\left(N N^{2}+N+2\right)}{3(N-1) N(N+1)} S_{3} \\
& +\frac{3 \cdot 2^{6+N}}{(N-2)(N+1)^{2}} S_{1,1}\left(\frac{1}{2}, 1\right)+\frac{2^{6-N} P_{5}}{3(N-3)(N-2)(N-1)^{2} N^{2}}\left(S_{2}(2)+S_{1} S_{1}(2)-S_{1,1}(1,2)-S_{1,1}(2,1)\right) \\
& -\frac{32\left(N^{2}+N+2\right)}{(N-1) N(N+1)}\left[S_{1}(2) S_{1,1}\left(\frac{1}{2}, 1\right)+S_{1,2}\left(\frac{1}{2}, 2\right)-S_{1,1,1}\left(\frac{1}{2}, 1,2\right)-S_{1,1,1}\left(\frac{1}{2}, 2,1\right)-\frac{\zeta_{2}}{2} S_{1}(2)\right] \\
& -\frac{48\left(N^{2}+N+2\right)}{(N-1) N(N+1)} S_{2,1}+\frac{4 P_{4}}{(N-2)(N-1) N^{2}(N+1)^{2}} \zeta_{2}
\end{aligned}
$$

harmonic sums:

$$
S_{a, \vec{b}}=S_{a, b}(N)=\sum_{i=1}^{N} \frac{\operatorname{sgn}(a)^{i}}{i^{a}} S_{\bar{b}}(i)
$$

The Missing Operator Matrix Element $\boldsymbol{\Gamma}_{\gamma e}$

Analytic Mellin-inversion with HarmonicSums:

$$
\begin{aligned}
\Gamma_{\gamma e}^{(1)}(z) & =\frac{P_{9}}{135 z^{3}}-\frac{320-335 z+231 z^{2}}{15 z} H_{0}+\frac{12+23 z}{6} H_{0}^{2}+\frac{2-z}{3} H_{0}^{3}+32(2-z)\left(\frac{(2-z)^{2}}{3 z^{2}}-\mathrm{H}_{0}\right)\left(\tilde{H}_{-1} \tilde{H}_{0}-\tilde{H}_{0,-1}\right) \\
& -8(2-z) \mathrm{H}_{0,0,1}-\frac{96-190 z+118 z^{2}-41 z^{3}}{3 z^{2}} \mathrm{H}_{1}^{2}-32(2-z)\left(\tilde{H}_{-1} \tilde{H}_{0}-\tilde{H}_{0,-1}\right) \tilde{H}_{1} \\
& -\left(\frac{2\left(32-48 z+36 z^{2}-13 z^{3}\right)}{3 z^{2}}+4(2-z) \mathrm{H}_{0}\right) \mathrm{H}_{0,1}-\left(\frac{2 P_{10}}{45 z^{4}}-\frac{2\left(32-48 z+12 z^{2}+7 z^{3}\right)}{3 z^{2}} \mathrm{H}_{0}\right) \mathrm{H}_{1} \\
& +\frac{2\left(2-2 z+z^{2}\right)}{z}\left(\frac{\mathrm{H}_{1}^{3}}{3}+8 \mathrm{H}_{1} \mathrm{H}_{0,1}+16 \tilde{H}_{0} \tilde{H}_{0,-1}-32 \tilde{H}_{0,0,-1}-16 \mathrm{H}_{0,1,1}+8 \tilde{H}_{0} \zeta_{2}\right)+\left(\frac{4\left(32-48 z+24 z^{2}-3 z^{3}\right)}{3 z^{2}}\right. \\
& \left.-8(2-z)\left(\mathrm{H}_{0}+2 \tilde{H}_{1}\right)\right) \zeta_{2}+\frac{8\left(12-10 z+5 z^{2}\right)}{z} \zeta_{3}
\end{aligned}
$$

harmonic polylogarithms of argument z and $1-z(\tilde{H}(z)=H(1-z))$:

$$
H_{a, \vec{b}}=H_{a, b}(z)=\int_{0}^{1} \mathrm{~d} \tau f_{a}(\tau) H_{\vec{b}}(\tau), \quad \text { with } \quad f_{0}(\tau)=\frac{1}{\tau}, f_{1}(\tau)=\frac{1}{1-\tau}, f_{-1}(\tau)=\frac{1}{1+\tau}
$$

The Radiators

$$
\frac{\mathrm{d} \sigma_{e^{+} e^{-}}}{\mathrm{d} s^{\prime}}=\frac{\sigma^{(0)}\left(s^{\prime}\right)}{s} H_{e^{+} e^{-}}(z, L)=\frac{\sigma^{(0)}\left(s^{\prime}\right)}{s} \sum_{i=0}^{\infty} \sum_{k=0}^{i} a^{i} L^{k} c_{i, k}
$$

- The radiators do not depend on the factorization scale, i.e. no collinear singularities for massive electrons.
- The analytic structures directly translate from the different ingredients.
- Radiators are distributions in z-space:

$$
c_{i, j}(z)=c_{i, j}^{\delta} \delta(1-z)+c_{i, j}^{+}+c_{i, j}^{\mathrm{reg}}
$$

$$
\begin{aligned}
c_{3,3}^{\delta} & =\frac{572}{9}-\frac{704}{3} \zeta_{2}+\frac{512}{3} \zeta_{3} \\
c_{3,3}^{+} & =\left(\frac{5744}{27}-256 \zeta_{2}\right) \mathcal{D}_{0}+\frac{1408}{3} \mathcal{D}_{1}+256 \mathcal{D}_{2} \\
\mathcal{D}_{k} & =\left(\frac{\ln ^{k}(1-z)}{1-z}\right)_{+}
\end{aligned}
$$

$$
c_{3,3}^{\mathrm{reg}}=\left\{\frac{16 \mathrm{H}_{0} P_{104}}{9(z-1)}-\frac{4 P_{131}}{27 z}+\frac{8\left(3-19 z^{2}\right) \mathrm{H}_{0}^{2}}{3(z-1)}\right.
$$

$$
+\left[\frac{16 P_{105}}{9 z}-\frac{128\left(1+z^{2}\right) \mathrm{H}_{0}}{z-1}\right] \mathrm{H}_{1}-128(1+z) \mathrm{H}_{1}^{2}
$$

$$
\left.-\frac{352}{3}(1+z) H_{0,1}+\frac{736}{3}(1+z) \zeta_{2}\right\}
$$

Numerical Results

- $\Delta \sigma$ is the change in the total cross section between orders.
- $z_{n}=4 m^{2}$

Numerical Results

- $\Delta \sigma$ is the change in the total cross section from one order to the other for $z_{0}=4 m_{\tau}^{2}$

Numerical Results

	Fixed width		s dep. width	
	Peak	Width	Peak	Width
	(MeV)	(MeV)	(MeV)	(MeV)
$O(\alpha)$ correction	185.638	539.408	181.098	524.978
$O\left(\alpha^{2} L^{2}\right):$	-96.894	-177.147	-95.342	-176.235
$O\left(\alpha^{2} L\right):$	6.982	22.695	6.841	21.896
$O\left(\alpha^{2}\right):$	0.176	-2.218	0.174	-2.001
$O\left(\alpha^{3} L^{3}\right):$	23.265	38.560	22.968	38.081
$O\left(\alpha^{3} L^{2}\right):$	-1.507	-1.888	-1.491	-1.881
$O\left(\alpha^{3} L\right):$	-0.152	0.105	-0.151	-0.084
$O\left(\alpha^{4} L^{4}\right):$	-1.857	0.206	-1.858	0.146
$O\left(\alpha^{4} L^{3}\right):$	0.131	-0.071	0.132	-0.065
$O\left(\alpha^{4} L^{2}\right):$	0.048	-0.001	0.048	0.001
$O\left(\alpha^{5} L^{5}\right):$	0.142	-0.218	0.144	-0.212
$O\left(\alpha^{5} L^{4}\right):$	-0.000	0.020	-0.001	0.020
$O\left(\alpha^{5} L^{3}\right):$	-0.008	0.009	-0.008	0.008
$O\left(\alpha^{6} L^{6}\right):$	-0.007	0.027	-0.007	0.027
$O\left(\alpha^{6} L^{5}\right):$	-0.001	0.000	-0.001	0.000

Table 1: Shifts in the Z-mass and the width due to the different contributions to the ISR QED radiative corrections for a fixed width of $\Gamma_{Z}=2.4952 \mathrm{GeV}$ and s-dependent width using $M_{Z}=$ 91.1876 GeV and $s_{0}=4 m_{\tau}^{2}$.

Application to the Forward-Backward Asymmetry $\boldsymbol{A}_{F B}$

- The forward-backward asymmetry is defined by:

$$
A_{F B}(s)=\frac{\sigma_{F}(s)-\sigma_{B}(s)}{\sigma_{F}(s)+\sigma_{B}(s)},
$$

with

$$
\sigma_{F}(s)=2 \pi \int_{0}^{1} \mathrm{~d} \cos (\theta) \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}, \quad \sigma_{B}(s)=2 \pi \int_{-1}^{0} \mathrm{~d} \cos (\theta) \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}
$$

and θ the angle between the incoming e^{-}and outgoing μ^{-}.

- The technique of radiators can also be used for $A_{F B}$: [Böhm et al. (LEP Physics Workshop 1989, p.203-234)]

$$
A_{F B}(s)=\frac{1}{\sigma_{F}(s)+\sigma_{B}(s)} \int_{z_{0}}^{1} \mathrm{~d} z \frac{4 z}{(1+z)^{2}} H_{F B}(z) \sigma_{F B}^{(0)}(z s)
$$

- Due to the angle dependence the radiators are not the same as in the total cross-section.

Application to the Forward-Backward Asymmetry $A_{F B}$

- At leading logarithmic (LL) accuracy the radiators are given by:

$$
H_{F B}^{L L}=\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1} \mathrm{~d} x_{2} \frac{(1+z)^{2}}{\left(x_{1}+x_{2}\right)^{2}} \Gamma_{e e}^{L L}\left(x_{1}\right) \Gamma_{e e}^{L L}\left(x_{2}\right) \delta\left(z-x_{1} x_{2}\right) .
$$

- Due to the additional angle dependence the integral does not factorize with the Mellin-transform.
- At subleading logarithmic accuracy the integral will likely become more involved due to additional angle dependence of the cross-sections.
- The integrals can be solved analytically in Mellin and momentum fraction space.

Application to $A_{F B}-$ Results

- In Mellin space we additionally encounter cyclotomic harmonic sums.
- In momentum fraction space we encounter cyclotomic harmonic polylogarithms, i.e. we have to introduce the additional letters:

$$
f_{\{4,0\}}(\tau)=\frac{1}{1+\tau^{2}}
$$

$$
f_{\{4,1\}}(\tau)=\frac{\tau}{1+\tau^{2}} .
$$

For example

Application to $\boldsymbol{A}_{F B}$ - Results

- In Mellin space we additionally encounter cyclotomic harmonic sums.
- In momentum fraction space we encounter cyclotomic harmonic polylogarithms, i.e. we have to introduce the additional letters:

$$
f_{\{4,0\}}(\tau)=\frac{1}{1+\tau^{2}}, \quad \quad f_{\{4,1\}}(\tau)=\frac{\tau}{1+\tau^{2}}
$$

For example: $\quad\left(S_{\vec{w}} \equiv S_{\vec{w}}(N)\right)$

$$
\begin{aligned}
& H_{F B}^{(2), L L}(N)=\frac{8\left(3 N^{2}+3 N-1\right) P_{1}}{(N-1) N^{2}(N+1)^{2}(N+2)(2 N-1)(2 N+3)}-\frac{32\left(4 N^{2}+4 N-1\right)(-1)^{N}}{(2 N-1)(2 N+1)(2 N+3)}\left[S_{-1}+\ln (2)\right], \\
& H_{F B}^{(3), L L}(N)=-(-1)^{N} \frac{256\left(4 N^{2}+4 N-1\right)}{(2 N-1)(2 N+1)(2 N+3)}\left[S_{-1,1}-\frac{1}{2} \ln ^{2}(2)+\sum_{i=1}^{N} \frac{\ln (2)+S_{-1}(i)}{1+2 i}\right]+\ldots
\end{aligned}
$$

Application to $\boldsymbol{A}_{F B}$ - Results

- In Mellin space we additionally encounter cyclotomic harmonic sums.
- In momentum fraction space we encounter cyclotomic harmonic polylogarithms, i.e. we have to introduce the additional letters:

$$
f_{\{4,0\}}(\tau)=\frac{1}{1+\tau^{2}}, \quad \quad f_{\{4,1\}}(\tau)=\frac{\tau}{1+\tau^{2}}
$$

For example: $\quad\left(H_{\vec{w}} \equiv H_{\vec{w}}(\sqrt{z})\right)$

$$
\begin{aligned}
& H_{F B}^{(2), L L}(z)=\frac{2(1-z)(1+z)^{2}}{z}+2 \pi \frac{(1-z)^{2}}{\sqrt{z}}-8(1+z) H_{0}-8(1-z)^{2} \frac{H_{\{4,0\}}}{\sqrt{z}} \\
& H_{F B}^{(3), L L}(z)=\frac{64(1-z)^{2}}{\sqrt{z}}\left[H_{1,\{4,0\}}-H_{-1,\{4,0\}}-H_{\{4,0\},\{4,1\}}+\frac{1}{2} H_{0,\{4,0\}}\right]+\ldots
\end{aligned}
$$

Application to $A_{F B}-$ Numerical Results

$A_{F B}$ evaluated at $s_{-}=(87.9 \mathrm{GeV})^{2}, M_{Z}^{2}$ and $s_{+}=(94.3 \mathrm{GeV})^{2}$ for the cut $z>4 m_{\tau}^{2} / s$.

	$A_{F B}\left(s_{-}\right)$	$A_{F B}\left(M_{Z}^{2}\right)$	$A_{F B}\left(s_{+}\right)$
$\mathcal{O}\left(\alpha^{0}\right)$	-0.3564803	0.0225199	0.2052045
$+\mathcal{O}\left(\alpha L^{1}\right)$	-0.2945381	-0.0094232	0.1579347
$+\mathcal{O}\left(\alpha L^{0}\right)$	-0.2994478	-0.0079610	0.1611962
$+\mathcal{O}\left(\alpha^{2} L^{2}\right)$	-0.3088363	0.0014514	0.1616887
$+\mathcal{O}\left(\alpha^{3} L^{3}\right)$	-0.3080578	0.0000198	0.1627252
$+\mathcal{O}\left(\alpha^{4} L^{4}\right)$	-0.3080976	0.0001587	0.1625835
$+\mathcal{O}\left(\alpha^{5} L^{5}\right)$	-0.3080960	0.0001495	0.1625911
$+\mathcal{O}\left(\alpha^{6} L^{6}\right)$	-0.3080960	0.0001499	0.1625911

$A_{F B}$ and its initial state QED corrections as a function of \sqrt{s}. Black (dashed) the Born approximation, blue (dotted) the $O(\alpha)$ improved approximation, red (full) also including the leading-log improvement up to $O\left(\alpha^{6}\right)$ for $s^{\prime} / s \geq 4 m_{\tau}^{2} / s$.

Application to $A_{F B}-$ Numerical Results

$$
\Delta A_{F B}=1-\frac{A_{F B}^{(1)}}{A_{F B}^{(0)}}
$$

where (I) denotes the order of ISR-corrections considered
$\Delta A_{F B}$ in \% as a function of \sqrt{s}. Black (dashed) the $O(\alpha)$ improved approximation, blue (dotted) the $O\left(\alpha^{2} L^{2}\right)$ improved approximation, red (full) also including the leading-log improvement up to $O\left(\alpha^{6}\right)$ for $s^{\prime} / s \geq 4 m_{\tau}^{2} / s$.

Application to $A_{F B}$ - Numerical Results

- $\Delta A_{F B}$ is the change of the forward-backward asymmetry from one order to the other for $z_{0}=4 m_{\tau}^{2}$

Conclusions

- We calculated the ISR corrections to the process $e^{+} e^{-} \rightarrow \gamma^{*} / Z^{*}$ up to $O\left(\alpha^{6} L^{5}\right)$.
- This includes the first (up to) three logarithmic terms at lower orders.
- We calculated the leading logarithmic ISR corrections to the forward-backward asymmetry up to $O\left(\alpha^{6} L^{6}\right)$.
- The corrections can become important at future $e^{+} e^{-}$machines running at high luminosities.
- The radiators can be used for various processes like $e^{+} e^{-} \rightarrow t \bar{t}$ and $e^{+} e^{-} \rightarrow Z H$.

blue: $\mathrm{O}\left(\alpha^{0}\right)$, obtained with QQbarThreshold [Beneke, Kiyo, Maier, Piclum (Comp. Phys. Com. (2009))] ; green: $\mathbf{O}\left(\alpha^{1}\right)$; red: $\mathbf{O}\left(\alpha^{2}\right)$

Outlook

- Provide the QED 'PDFs', not only radiators.
- The massless Drell-Yan cross sections are known up to $O\left(\alpha^{3}\right)$
\Rightarrow An extension to the first four logarithmic orders is possible, but needs the calculation the operator matrix elements up to $O\left(\alpha^{3}\right)$ and the 4 -loop splitting functions.
- The technique can be extended to subleading logarithmic corrections of $A_{F B}$.
- The method can be extended to QCD to study e.g. the heavy-quark initiated Drell-Yan process.

[^0]: ${ }^{1}$ In the case of massless external states massive operator matrix elements have been considered in the context of DIS. [Buza, Matiounine, Smith, Migneron, van Neerven (Nucl. Phys. B472 (1996)),
 Bierenbaum, Blümlein, Klein (Nucl. Phys. B820 (2009)), ...]

