High-precision QED initial state corrections for $e^+e^- o \gamma^*/Z^*$ annihilation

Trento Workshop, 2022 Johannes Blümlein | July 18, 2022

DESY

in collaboration with: J. Ablinger, A. De Freitas, C. Raab and K. Schönwald [based on: Blümlein, De Freitas, van Neerven, (Nucl. Phys. B 855 (2012) 508–569)] [Blümlein, De Freitas, Raab, Schönwald (Phys. Lett. B701 (2019) 206-209, Phys. Lett. B801 (2021) 135196, Nucl. Phys. B 956 (2020) 115055)] [Ablinger, Blümlein, De Freitas, Schönwald (Nucl. Phys. B955 (2020) 115045)] [Blümlein, De Freitas, Schönwald (Phys. Lett. B816 (2021) 136250)]

Outline

The Method of Massive Operator Matrix Elements

3 Results for the Total Cross-Section

vation The Method of Massive Operator Matrix Elements 00 0000000 Results for the Total Cross-Section

Results for the Forward-Backward Asymmetry

Conclusions OO

<u>Johannes Blümlein</u> High-precision QED initial state corrections for $e^+e^-
ightarrow \gamma^*/Z^*$ annihilation

July 18, 2022

2

Motivation

 Corrections due to initial state radiation (ISR) can be large, especially due to large logarithmic corrections

 $L = \ln(s/m_e^2) \approx 10.$

- These corrections are important e.g.
 - for the prediction of the Z-boson peak
 - for t t production

• associated Higgs production through $e^+ e^- \rightarrow Z^* H^0$

at future $e^+ e^-$ colliders.

- We extend the known O(α²) ISR corrections up to O(α⁶L⁵), including the first three subleading logarithmic corrections at lower orders.
- We extend the ISR corrections for the forward-backward asymmetry at leading logarithmic order to O(α⁶L⁶).

Motivation The Method of Massive Operator Matrix Elements

Results for the Total Cross-Section

Johannes Blümlein High-precision QED initial state corrections for $e^+e^- o \gamma^*/Z^*$ annihilation

Results for the	Forward-Backward Asymmetry
000000	
	July 18, 2022

Previous Calculations

1988: First calculation to O(α²) for the LEP analysis, through expansion of the phase space integrals (BBN).

[Berends, Burgers, van Neerven (Nucl. Phys. B297 (1988))]

• 2012: New calculation up to $O(\alpha^2)$ using the method of massive operator matrix elements. [Blümlein, De Freitas, van Neerven (Nucl Phys. B855 (2012))]

 \Rightarrow Calculations do not agree at $O(\alpha^2 L^0)!$

- Errors in one of the calculations?
- Breakdown of factorization?
- We revisited the original calculation, doing the expansion in m_e at the latest stage. [Blümlein, De Freitas, Raab, Schönwald (Nucl. Phys. B956 (2020))]

Results for the Total Cross-Section

Conclusion: 00 4/26

Johannes Blümlein High-precision QED initial state corrections for $e^+e^- o \gamma^*/Z^*$ annihilation

July 18, 2022

Result: Process II

• as an example we find the difference term to BBN for process II:

$$\begin{split} \delta_{II} &= \frac{8}{3} \int_{0}^{1} \frac{\mathrm{d}y}{y} \sqrt{1 - y} (2 + y) \left[\frac{(1 - z)(1 - (4 - z)z)y}{4z + (1 - z^{2})y} - \frac{1 + z^{2}}{1 - z} \ln \left(1 + \frac{(1 - z)^{2}y}{4z} \right) \right] \\ &= -\frac{128}{9} \left[3 + \frac{1}{(1 - z)^{3}} - \frac{2}{(1 - z)^{2}} - 2z \right] - 16 \left[1 + \frac{5z}{3} + \frac{8}{9} \frac{1}{(1 - z)^{4}} - \frac{20}{9} \frac{1}{(1 - z)^{3}} \right] \\ &+ \frac{4}{9} \frac{1}{(1 - z)^{2}} \left[\ln(z) + \frac{8}{3} \frac{1 + z^{2}}{1 - z} \left[\frac{10}{9} - \frac{14}{3} \ln(z) - \ln^{2}(z) \right], \end{split}$$

• in this case the difference can be attributed to the neglection of initial state electron masses

- in the pure-singlet process a calculation done for massless partons was reused [Schellekens, van Neerven (Phys.Rev. D21 (1980))]
- \Rightarrow our results agree with the ones obtained using massive OMEs

Recalculation – Numerical Illustration

Relative deviation from BBN of process II (red), process III (blue) and process IV (magenta) contribution in %.

MotivationThe Method of Massive Operator Matrix ElementsResults for the Total Cross-SectionResults for the Forward-Backward AsymmetryConclusions $OOO \bullet$ $OOO \circ OOO \circ OO \circ OOO \circ OO \circ OOO \circ OO \circ OOO OO OOO OO OO OOO OOO OOO$

The initial state radiation factorizes from the born cross section:

$$\frac{\mathrm{d}\sigma_{ij}}{\mathrm{d}s'} = \frac{\sigma^{(0)}(s')}{s} \sum_{l,k} \Gamma_{li}\left(z,\frac{\mu^2}{m_e^2}\right) \otimes \tilde{\sigma}_{lk}\left(z,\frac{s'}{\mu^2}\right) \otimes \Gamma_{kj}\left(z,\frac{\mu^2}{m_e^2}\right) + O\left(\frac{m_e^2}{s}\right) = \frac{\sigma^{(0)}(s')}{s} H_{ij}\left(z,\frac{s}{m_e^2}\right)$$

with z = s'/s, μ the factorization scale, into:

- massless (Drell-Yan) cross sections $\tilde{\sigma}_{ij}\left(Z, \frac{s'}{\mu^2}\right)$ [Hamberg, van Neerven, Matsuura (Nucl. Phys. B 359 (1991))] [Harlander, Kilgore (Phys. Rev. Lett. 88 (2002))] [Duhr, Dulat, Mistelberger (Phys. Rev. Lett. 125 (2020))]
- massive operator matrix elements $\Gamma_{ij}\left(z, \frac{\mu^2}{m_e^2}\right)$, which carry all mass dependence [Blümlein, De Freitas, van Neerven (Nucl Phys. B855 (2012))]

July 18, 2022

 $\left[f(z)\otimes g(z)=\int\limits_{0}^{1}\mathrm{d}x_{1}\int\limits_{0}^{1}\mathrm{d}x_{2}f(x_{1})g(x_{2})\delta(z-x_{1}x_{2}), f(N)=\int\limits_{0}^{1}\mathrm{d}z\,z^{N-1}f(z)\right]$

The initial state radiation factorizes from the born cross section:

$$\frac{\mathrm{d}\sigma_{ij}}{\mathrm{d}s'} = \frac{\sigma^{(0)}(s')}{s} \sum_{l,k} \Gamma_{li}\left(N, \frac{\mu^2}{m_e^2}\right) \cdot \tilde{\sigma}_{lk}\left(N, \frac{s'}{\mu^2}\right) \cdot \Gamma_{kj}\left(N, \frac{\mu^2}{m_e^2}\right) + O\left(\frac{m_e^2}{s}\right) = \frac{\sigma^{(0)}(s')}{s} H_{ij}\left(N, \frac{s}{m_e^2}\right)$$

with z = s'/s, μ the factorization scale, into:

• massless (Drell-Yan) cross sections $\tilde{\sigma}_{ij}\left(Z, \frac{s'}{\mu^2}\right)$ [Hamberg, van Neerven, Matsuura (Nucl. Phys. B 359 (1991))] [Harlander, Kilgore (Phys. Rev. Lett. 88 (2002))] [Duhr, Dulat, Mistelberger (Phys. Rev. Lett. 125 (2020))]

• massive operator matrix elements $\Gamma_{ij}\left(z, \frac{\mu^2}{m_e^2}\right)$, which carry all mass dependence [Blümlein, De Freitas, van Neerven (Nucl Phys. B855 (2012))]

July 18, 2022

 $\left[f(z)\otimes g(z)=\int\limits_{0}^{1}\mathrm{d}x_{1}\int\limits_{0}^{1}\mathrm{d}x_{2}f(x_{1})g(x_{2})\delta(z-x_{1}x_{2}), f(N)=\int\limits_{0}^{1}\mathrm{d}z\,z^{N-1}f(z)\right]$

Massless cross sections and massive operator matrix elements obey renormalization group equations:

• massless cross sections $\tilde{\sigma}_{ij}$

$$\left[\left(\frac{\partial}{\partial\lambda}-\beta(a)\frac{\partial}{\partial a}\right)\delta_{kl}\delta_{jm}+\frac{1}{2}\gamma_{kl}(N)\delta_{jm}+\frac{1}{2}\gamma_{jm}(N)\delta_{kl}\right]\tilde{\sigma}_{lj}(N)=0$$

massive operator matrix elements Γ_{ij}

$$\left[\left(\frac{\partial}{\partial \Lambda} + \beta(\mathbf{a})\frac{\partial}{\partial \mathbf{a}}\right)\delta_{jl} + \frac{1}{2}\gamma_{kl}(\mathbf{N})\right]\Gamma_{ll}(\mathbf{N}) = 0$$

with $\lambda = \ln(s'/\mu^2)$, $\Lambda = \ln(\mu^2/m_e^2)$, the QED β -function $\beta(a)$ and $a = \alpha/(4\pi)$

Here the usual anomalous dimensions, i.e. Mellin transforms of the splitting functions, contribute:

$$\gamma_{ij}(N) = -\int_{0}^{1} \mathrm{d}z \, z^{N-1} P_{ij}(z)$$

Motivation The Method of Massive Operator Matrix Elements

Results for the Total Cross-Sect

Results for the Forward-Backward Asymmetry

Conclusions

Johannes Blümlein High-precision QED initial state corrections for $e^+e^- o \gamma^*/Z^*$ annihilation

July 18, 2022

$$\frac{\mathrm{d}\sigma_{e^+e^-}}{\mathrm{d}s'} = \frac{\sigma^{(0)}(s')}{s} H_{e^+e^-}(z,L) = \frac{\sigma^{(0)}(s')}{s} \sum_{i=0}^{\infty} \sum_{k=0}^{i} a^i L^k c_{i,k}$$

The radiators:

$$\begin{split} & c_{1,1} = -\gamma_{ee}^{(0)}, \\ & c_{1,0} = \tilde{\sigma}_{ee}^{(0)} + 2\Gamma_{ee}^{(0)}, \\ & c_{2,2} = \frac{1}{2}\gamma_{ee}^{(0)2} + \frac{\beta_0}{2}\gamma_{ee}^{(0)} + \frac{1}{4}\gamma_{e\gamma}^{(0)}\gamma_{\gamma e}^{(0)}, \\ & \dots \\ & c_{3,1} = -\gamma_{ee}^{(2)} - 2\Gamma_{ee}^{(0)}\gamma_{ee}^{(1)} - \Gamma_{ee}^{(0)}\gamma_{e\gamma}^{(0)}\Gamma_{\gamma e}^{(0)} - \gamma_{e\gamma}^{(1)}\Gamma_{\gamma e}^{(0)} - \gamma_{e\gamma}^{(0)}\Gamma_{\gamma e}^{(0)} - \beta_1\tilde{\sigma}_{ee}^{(0)} - \gamma_{ee}^{(1)}\tilde{\sigma}_{ee}^{(0)} \\ & - \gamma_{e\gamma}^{(0)}\Gamma_{\gamma e}^{(0)}\tilde{\sigma}_{ee}^{(0)} - 2\Gamma_{ee}^{(0)}\gamma_{e\theta}^{(0)}\tilde{\sigma}_{e\gamma}^{(0)} - \gamma_{\gamma e}^{(1)}\tilde{\sigma}_{e\gamma}^{(0)} - \Gamma_{\gamma e}^{(0)}\gamma_{\gamma \sigma}^{(0)}\tilde{\sigma}_{e\gamma}^{(0)} - \gamma_{\gamma e}^{(0)}\tilde{\sigma}_{e\gamma}^{(1)} + \beta_0 \Big[-2\Gamma_{ee}^{(0)}\tilde{\sigma}_{ee}^{(0)} \\ & - 2\tilde{\sigma}_{ee}^{(1)} - 2\Gamma_{\gamma e}^{(0)}\tilde{\sigma}_{e\gamma}^{(0)} \Big] - \gamma_{ee}^{(0)} \Big[\Gamma_{ee}^{(0)2} + 2\Gamma_{ee}^{(1)} + 2\Gamma_{ee}^{(0)}\tilde{\sigma}_{ee}^{(0)} + \tilde{\sigma}_{ee}^{(1)} + \Gamma_{\gamma e}^{(0)}\tilde{\sigma}_{e\gamma}^{(0)} \Big] , \end{split}$$

Motivation The Method of Massive Operator Matrix Elements

. . .

Results for the Total Cross-Section

Results for the Forward-Backward Asymmetry 000000 Conclusions

<u>Johannes Blümlein</u> High-precision QED initial state corrections for $e^+e^- o \gamma^*/Z^*$ annihilation

July 18, 2022

For the first three logarithmic orders we need the following ingredients:

• splitting functions γ_{ij} up to three-loop order

[E.G. Floratos, D.A. Ross, C.T. Sachrajda (Nucl. Phys. B129 (1977))]

[A. Gonzalez-Arroyo, C. Lopez, F.J. Yndurain (Nucl. Phys. B153 (1979))]

[S. Moch, J. Vermaseren, A. Vogt (Nucl.Phys.B 688/691 (2004))]

[J. Blümlein, P. Marquard, K. Schönwald, C. Schneider (Nucl. Phys. B 971 (2021))]

 massless (Drell-Yan) cross sections σ_{ij} up to two-loop order [Hamberg, van Neerven, Matsuura (Nucl. Phys. B 359 (1991))]
 [Harlander, Kilgore (Phys. Rev. Lett. 88 (2002))]

 massive operator matrix elements
 [j up to two-loop order¹
 [Blümlein, De Freitas, van Neerven (Nucl. Phys. B855 (2012))]

 $\Rightarrow \Gamma_{\gamma e}$ was only considered up to one-loop order

¹In the case of massless external states massive operator matrix elements have been considered in the context of DIS. [Buza, Matiounine, Smith, Migneron, van Neerven (Nucl. Phys. B472 (1996)), Bierenbaum, Blümlein, Klein (Nucl. Phys. B820 (2009)), ...]

sults for the Total Cross-Section

Results for the Forward-Backward Asymmetry 000000 Conclusions OO

<u>Johannes Blümlein</u> High-precision QED initial state corrections for $e^+e^- o \gamma^*/Z^*$ annihilation

 p, ν, b p, μ, a

$$\frac{|+(-1)^{N}}{2}(\Delta . p)^{N-2}[g_{\mu\nu}(\Delta . p)^{2} - (\Delta_{\mu}p_{\nu} + \Delta_{\nu}p_{\mu})\Delta . p + p^{2}\Delta_{\mu}\Delta_{\nu}]$$

The technique has been used to derive deep-inelastic scattering (DIS) structure functions in the asymptotic limit Q² ≫ m² up to O(α³_s).

• In the context of DIS proven to work at α_s^2 in the

non-singlet process
 [Buza, Matiounine, Smith, van Neerven (Nucl.Phys. B485 (1997))
 Blümlein, Falcioni, De Freitas (Nucl.Phys. B910 (2016))]
 pure-singlet process
 [Blümlein, De Freitas, Raab, Schönwald (Nucl.Phys. B945 (2019))]
Motivation
The Method of Massive Operator Matrix Elements
Results for the Total Cross-Section
Results for the Forward-Backward Asymmetry

<u>Johannes Blümlein</u> High-precision QED initial state corrections for $e^+e^- o \gamma^*$ / Z * annihilation

00000000

July 18, 2022

- We have to compute on-shell 2-point functions with local operator insertions ($\Delta^2 = 0$).
- The operator can be resummed into a propagator like term:

$$\sum_{N=0}^{\infty} t^N (\Delta . k)^N = \frac{1}{1 - t \Delta . k}.$$

- The calculation can now follow standard techniques:
 - Integration-By-Parts reduction to master integrals.
 - Calculation of the master integrals via differential equations in the resummation variable t.
 - We find the Mellin-space expression by symbolically computing the *N*-th derivative.
- For the calculations we make use of the packages Sigma [C. Schneider (Sem. Lothar. Combin.56 (2007))] and HarmonicSums [J. Ablinger et al. (arXiv:1011.1176)].

Motivation	The Method of Massive Operator Matrix Elements	Results for the Total Cross-Section	Results for the Forward-Backward Asymmetry	Conclusions
0000	00000000	0000	000000	00
Johannes Blümlein High-precision QED initial state corrections for $e^+e^- o \gamma^*/Z^*$ annihilation			July 18, 2022	12/26

$$\begin{split} \Gamma_{\gamma e}^{(1)}(N) &= \frac{P_8}{27(N-4)(N-3)(N-2)(N-1)N^4(N+1)^4} + \left(\frac{2P_7}{9(N-4)(N-3)(N-2)(N-1)N^3(N+1)^3} + \frac{2(N^2+N+2)}{(N-1)N(N+1)}S_2\right)S_1 \\ &+ \frac{P_3}{3(N-2)(N-1)N(N+1)^2}S_1^{-2} + \frac{2(N^2+N+2)}{3(N-1)N(N+1)}S_1^{-3} + \frac{P_6}{3(N-2)(N-1)N^2(N+1)^2}S_2 + \frac{4(N^2+N+2)}{3(N-1)N(N+1)}S_3 \\ &+ \frac{3\cdot 2^{6+N}}{(N-2)(N+1)^2}S_{1,1}\left(\frac{1}{2},1\right) + \frac{2^{6-N}P_5}{3(N-3)(N-2)(N-1)^2N^2}\left(S_2(2) + S_1S_1(2) - S_{1,1}(1,2) - S_{1,1}(2,1)\right) \\ &- \frac{32(N^2+N+2)}{(N-1)N(N+1)}\left[S_1(2)S_{1,1}\left(\frac{1}{2},1\right) + S_{1,2}\left(\frac{1}{2},2\right) - S_{1,1,1}\left(\frac{1}{2},1,2\right) - S_{1,1,1}\left(\frac{1}{2},2,1\right) - \frac{\zeta_2}{2}S_1(2)\right] \\ &- \frac{48(N^2+N+2)}{(N-1)N(N+1)}S_{2,1} + \frac{4P_4}{(N-2)(N-1)N^2(N+1)^2}\zeta_2 \end{split}$$

harmonic sums:

generalized harmonic sums:

$$S_{a,\vec{b}} = S_{a,\vec{b}}(N) = \sum_{i=1}^{N} \frac{\text{sgn}(a)^{i}}{i^{a}} S_{\vec{b}}(i) \qquad \qquad S_{a,\vec{b}}(c,\vec{d}) = S_{a,\vec{b}}(c,\vec{d};N) = \sum_{i=1}^{N} \frac{(\text{sgn}(a) \cdot c)^{i}}{i^{a}} S_{\vec{b}}(\vec{d};i)$$

 Motivation
 The Method of Massive Operator Matrix Elements

 0000
 00000000

Results for the Total Cross-Section

Results for the Forward-Backward Asymmetry 000000 Conclusions

Johannes Blümlein High-precision QED initial state corrections for $e^+e^- o \gamma^*/Z^*$ annihilation

July 18, 2022

Analytic Mellin-inversion with HarmonicSums:

$$\begin{split} & \begin{pmatrix} 1 \\ \gamma e \end{pmatrix} (z) = \frac{P_9}{135z^3} - \frac{320 - 335z + 231z^2}{15z} H_0 + \frac{12 + 23z}{6} H_0^2 + \frac{2 - z}{3} H_0^3 + 32(2 - z) \left(\frac{(2 - z)^2}{3z^2} - H_0\right) \left(\tilde{H}_{-1}\tilde{H}_0 - \tilde{H}_{0,-1}\right) \\ & - 8(2 - z) H_{0,0,1} - \frac{96 - 190z + 118z^2 - 41z^3}{3z^2} H_1^2 - 32(2 - z) \left(\tilde{H}_{-1}\tilde{H}_0 - \tilde{H}_{0,-1}\right) \tilde{H}_1 \\ & - \left(\frac{2(32 - 48z + 36z^2 - 13z^3)}{3z^2} + 4(2 - z) H_0\right) H_{0,1} - \left(\frac{2P_{10}}{45z^4} - \frac{2(32 - 48z + 12z^2 + 7z^3)}{3z^2} H_0\right) H_1 \\ & + \frac{2(2 - 2z + z^2)}{z} \left(\frac{H_1^3}{3} + 8H_1 H_{0,1} + 16\tilde{H}_0 \tilde{H}_{0,-1} - 32\tilde{H}_{0,0,-1} - 16H_{0,1,1} + 8\tilde{H}_0 \zeta_2\right) + \left(\frac{4(32 - 48z + 24z^2 - 3z^3)}{3z^2} - 8(2 - z)(H_0 + 2\tilde{H}_1)\right) \zeta_2 + \frac{8(12 - 10z + 5z^2)}{z} \zeta_3 \end{split}$$

harmonic polylogarithms of argument z and 1 - z ($\tilde{H}(z) = H(1 - z)$):

$$H_{a,\vec{b}} = H_{a,\vec{b}}(z) = \int_{0}^{1} \mathrm{d}\tau f_{a}(\tau) H_{\vec{b}}(\tau), \quad \text{with} \quad f_{0}(\tau) = \frac{1}{\tau}, \ f_{1}(\tau) = \frac{1}{1-\tau}, \ f_{-1}(\tau) = \frac{1}{1+\tau}$$

Motivation

Г

The Method of Massive Operator Matrix Elements

Results for the Total Cross-Sect

Results for the Forward-Backward Asymmetry 000000 Conclusion: OO

Johannes Blümlein High-precision QED initial state corrections for $e^+e^- o \gamma^*/Z^*$ annihilation

July 18, 2022

The Radiators

$$\frac{\mathrm{d}\sigma_{e^+e^-}}{\mathrm{d}s'} = \frac{\sigma^{(0)}(s')}{s} H_{e^+e^-}(z,L) = \frac{\sigma^{(0)}(s')}{s} \sum_{i=0}^{\infty} \sum_{k=0}^{i} a^i L^k c_{i,k}$$

- The radiators do not depend on the factorization scale, i.e. no collinear singularities for massive electrons.
- The analytic structures directly translate from the different ingredients.
- Radiators are distributions in *z*-space:

$$c_{i,j}(z) = c_{i,j}^{\delta}\delta(1-z) + c_{i,j}^{+} + c_{i,j}^{\mathrm{reg}}$$

$$c_{3,3}^{\delta} = \frac{572}{9} - \frac{704}{3}\zeta_{2} + \frac{512}{3}\zeta_{3}, \qquad c_{3,3}^{reg} = \begin{cases} \frac{16H_{0}P_{104}}{9(z-1)} - \frac{4P_{131}}{27z} + \frac{8(3-19z^{2})H_{0}^{2}}{3(z-1)} \\ + \left[\frac{16P_{105}}{9z} - \frac{128(1+z^{2})H_{0}}{z-1}\right]H_{1} - 128(1+z)H_{1}^{2} \\ - \frac{352}{3}(1+z)H_{0,1} + \frac{736}{3}(1+z)\zeta_{2} \end{cases}$$

0000

<u>Johannes Blümlein</u> High-precision QED initial state corrections for $e^+e^-
ightarrow \gamma^*/Z^*$ annihilation

July 18, 2022

Numerical Results

Numerical Results

Numerical Results

	Fixed width		s dep. width	
	Peak	Width	Peak	Width
	(MeV)	(MeV)	(MeV)	(MeV)
$O(\alpha)$ correction	185.638	539.408	181.098	524.978
$O(\alpha^2 L^2)$:	-96.894	-177.147	-95.342	-176.235
$O(\alpha^2 L)$:	6.982	22.695	6.841	21.896
$O(\alpha^2)$:	0.176	- 2.218	0.174	- 2.001
$O(\alpha^3 L^3)$:	23.265	38.560	22.968	38.081
$O(\alpha^3 L^2)$:	- 1.507	- 1.888	- 1.491	- 1.881
$O(\alpha^3 L)$:	- 0.152	0.105	- 0.151	-0.084
$O(\alpha^4 L^4)$:	- 1.857	0.206	-1.858	0.146
$O(\alpha^4 L^3)$:	0.131	- 0.071	0.132	- 0.065
$O(\alpha^4 L^2)$:	0.048	- 0.001	0.048	0.001
$O(\alpha^5 L^5)$:	0.142	-0.218	0.144	-0.212
$O(\alpha^5 L^4)$:	- 0.000	0.020	- 0.001	0.020
$O(\alpha^5 L^3)$:	- 0.008	0.009	- 0.008	0.008
$O(\alpha^6 L^6)$:	- 0.007	0.027	- 0.007	0.027
$O(\alpha^6 L^5)$:	- 0.001	0.000	- 0.001	0.000

Table 1: Shifts in the Z-mass and the width due to the different contributions to the ISR QED radiative corrections for a fixed width of $\Gamma_Z=2.4952~{\rm GeV}$ and s-dependent width using $M_Z=91.1876~{\rm GeV}$ and s_0=4m_{\rm c}^2.

The Method of Massive Operator Matrix Elements

Motivation

Results for the Total Cross-Section

Results for the Forward-Backward Asymmetry

Conclusion: OO

Johannes Blümlein High-precision QED initial state corrections for $e^+e^- o \gamma^*/Z^*$ annihilation

July 18, 2022

Application to the Forward-Backward Asymmetry A_{FB}

• The forward-backward asymmetry is defined by:

$$m{A}_{FB}(m{s}) = rac{\sigma_F(m{s}) - \sigma_B(m{s})}{\sigma_F(m{s}) + \sigma_B(m{s})},$$

with

$$\sigma_{F}(s) = 2\pi \int_{0}^{1} \mathrm{d}\cos(\theta) \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}, \qquad \qquad \sigma_{B}(s) = 2\pi \int_{-1}^{0} \mathrm{d}\cos(\theta) \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$$

and θ the angle between the incoming e^- and outgoing μ^- .

The technique of radiators can also be used for A_{FB}: [Böhm et al. (LEP Physics Workshop 1989, p.203–234)]

$$egin{aligned} \mathcal{A}_{FB}(s) &= rac{1}{\sigma_{F}(s) + \sigma_{B}(s)} \int\limits_{z_{0}}^{1} \mathrm{d}z rac{4z}{(1+z)^{2}} \mathcal{H}_{FB}(z) \sigma_{FB}^{(0)}(zs) \end{aligned}$$

Due to the angle dependence the radiators are not the same as in the total cross-section.

MotivationThe Method of Massive Operator Matrix ElementsResults for the Total Cross-SectionResults for the Forward-Backward AsymmetryConclusions000Johannes Blümlein High-precision QED initial state corrections fore+e- $\rightarrow \gamma^*/Z^*$ annihilationJuly 18, 202219/26

Application to the Forward-Backward Asymmetry A_{FB}

• At leading logarithmic (LL) accuracy the radiators are given by:

$$H_{FB}^{LL} = \int_{0}^{1} \mathrm{d}x_{1} \int_{0}^{1} \mathrm{d}x_{2} \frac{(1+z)^{2}}{(x_{1}+x_{2})^{2}} \Gamma_{ee}^{LL}(x_{1}) \Gamma_{ee}^{LL}(x_{2}) \delta(z-x_{1}x_{2}).$$

- Due to the additional angle dependence the integral does not factorize with the Mellin-transform.
- At subleading logarithmic accuracy the integral will likely become more involved due to additional angle dependence of the cross-sections.
- The integrals can be solved analytically in Mellin and momentum fraction space.

 Motivation
 The Method of Massive Operator Matrix Elements
 Results for the Total Cross-Section
 Results for the Forward-Backward Asymmetry
 Conclusions

 0000
 0000000
 000
 000
 000
 000
 000
 000

 Johannes Blümlein
 High-precision QED initial state corrections fore⁺e⁻ $\rightarrow \gamma^*/Z^*$ annihilation
 July 18, 2022
 20/26

Application to A_{FB} – Results

- In Mellin space we additionally encounter cyclotomic harmonic sums.
- In momentum fraction space we encounter cyclotomic harmonic polylogarithms, i.e. we have to introduce the additional letters:

$$f_{\{4,0\}}(\tau) = \frac{1}{1+\tau^2}, \qquad \qquad f_{\{4,1\}}(\tau) = \frac{\tau}{1+\tau^2}.$$

For example

$$H_{FB}^{(2),LL}(N) = \frac{8(3N^2 + 3N - 1)P_1}{(N-1)N^2(N+1)^2(N+2)(2N-1)(2N+3)} - \frac{32(4N^2 + 4N - 1)(-1)^N}{(2N-1)(2N+1)(2N+3)}[S_{-1} + \ln(2)],$$

$$H_{FB}^{(3),LL}(N) = -(-1)^N \frac{256(4N^2 + 4N - 1)}{(2N-1)(2N+1)(2N+3)} \left[S_{-1,1} - \frac{1}{2}\ln^2(2) + \sum_{i=1}^N \frac{\ln(2) + S_{-1}(i)}{1 + 2i}\right] + \dots$$

Motivation

The Method of Massive Operator Matrix Elements

Results for the Total Cross-Section

Results for the Forward-Backward Asymmetry

Conclusion: OO

<u>Johannes Blümlein</u> High-precision QED initial state corrections for $e^+e^- o \gamma^*/Z^*$ annihilation

July 18, 2022

Application to A_{FB} – Results

- In Mellin space we additionally encounter cyclotomic harmonic sums.
- In momentum fraction space we encounter cyclotomic harmonic polylogarithms, i.e. we have to introduce the additional letters:

$$f_{\{4,0\}}(\tau) = \frac{1}{1+\tau^2}, \qquad \qquad f_{\{4,1\}}(\tau) = \frac{\tau}{1+\tau^2}$$

For example:

$$H_{FB}^{(2),LL}(N) = \frac{8(3N^2 + 3N - 1)P_1}{(N-1)N^2(N+1)^2(N+2)(2N-1)(2N+3)} - \frac{32(4N^2 + 4N - 1)(-1)^N}{(2N-1)(2N+1)(2N+3)}[S_{-1} + \ln(2)],$$

$$H_{FB}^{(3),LL}(N) = -(-1)^N \frac{256(4N^2 + 4N - 1)}{(2N-1)(2N+1)(2N+3)} \left[S_{-1,1} - \frac{1}{2}\ln^2(2) + \sum_{i=1}^N \frac{\ln(2) + S_{-1}(i)}{1 + 2i}\right] + \dots$$

Motivation

The Method of Massive Operator Matrix Elements

Results for the Total Cross-Section

Results for the Forward-Backward Asymmetry

Conclusion: OO

<u>Johannes Blümlein</u> High-precision QED initial state corrections for $e^+e^-
ightarrow \gamma^*/Z^*$ annihilation

 $\left(S_{\vec{w}}\equiv S_{\vec{w}}(N)\right)$

July 18, 2022

Application to A_{FB} – Results

- In Mellin space we additionally encounter cyclotomic harmonic sums.
- In momentum fraction space we encounter cyclotomic harmonic polylogarithms, i.e. we have to introduce the additional letters:

$$f_{\{4,0\}}(\tau) = \frac{1}{1+\tau^2}, \qquad \qquad f_{\{4,1\}}(\tau) = \frac{\tau}{1+\tau^2}$$

For example:

 $\left(H_{\vec{w}} \equiv H_{\vec{w}}(\sqrt{z})\right)$

$$\begin{split} H^{(2),LL}_{FB}(z) &= \frac{2(1-z)(1+z)^2}{z} + 2\pi \frac{(1-z)^2}{\sqrt{z}} - 8(1+z)H_0 - 8(1-z)^2 \frac{H_{\{4,0\}}}{\sqrt{z}}, \\ H^{(3),LL}_{FB}(z) &= \frac{64(1-z)^2}{\sqrt{z}} \left[H_{1,\{4,0\}} - H_{-1,\{4,0\}} - H_{\{4,0\},\{4,1\}} + \frac{1}{2}H_{0,\{4,0\}} \right] + \dots \end{split}$$

Motivation

The Method of Massive Operator Matrix Elements

Results for the Forward-Backward Asymmetry 000000

Johannes Blümlein High-precision QED initial state corrections for $e^+e^- o \gamma^*/Z^*$ annihilation

July 18, 2022

Application to A_{FB} – Numerical Results

 A_{FB} evaluated at $s_-=(87.9\,{\rm GeV})^2,~M_Z^2$ and $s_+=(94.3\,{\rm GeV})^2$ for the cut $z>4m_\tau^2/s.$

	$A_{FB}(s_{-})$	$A_{FB}(M_Z^2)$	$A_{FB}(s_+)$
$O(\alpha^0)$	-0.3564803	0.0225199	0.2052045
$+O(\alpha L^1)$	-0.2945381	-0.0094232	0.1579347
$+O(\alpha L^0)$	-0.2994478	-0.0079610	0.1611962
$+O(\alpha^2 L^2)$	-0.3088363	0.0014514	0.1616887
$+O(\alpha^3L^3)$	-0.3080578	0.0000198	0.1627252
$+O(\alpha^4 L^4)$	-0.3080976	0.0001587	0.1625835
$+O(\alpha^5L^5)$	-0.3080960	0.0001495	0.1625911
$+O(\alpha^6L^6)$	-0.3080960	0.0001499	0.1625911

 A_{FB} and its initial state QED corrections as a function of \sqrt{s} . Black (dashed) the Born approximation, blue (dotted) the $O(\alpha)$ improved approximation, red (full) also including the leading-log improvement up to $O(\alpha^6)$ for $s'/s \ge 4m_{\tau}^2/s$.

 Results for the Forward-Backward Asymmetry

Conclusions O O

Application to A_{FB} – Numerical Results

$$\Delta A_{FB} = 1 - rac{A_{FB}^{(l)}}{A_{FB}^{(0)}},$$

where (*I*) denotes the order of ISR-corrections considered

 ΔA_{FB} in % as a function of \sqrt{s} . Black (dashed) the $O(\alpha)$ improved approximation, blue (dotted) the $O(\alpha^2 L^2)$ improved approximation, red (full) also including the leading-log improvement up to $O(\alpha^6)$ for $s'/s \ge 4m_{\tau}^2/s$.

Motivation	The Method of Massive Operator Matrix Elements	Results for the Total Cross-Section	Results for the Forward-Backward Asymmetry	Conclusions
0000	0000000	0000	000000	00
Johannes Blümlein High-precision QED initial state corrections for $e^+e^- o \gamma^*/Z^*$ annihilation			July 18, 2022	23/26

Application to A_{FB} – Numerical Results

• ΔA_{FB} is the change of the forward-backward asymmetry from one order to the other for $z_0 = 4m_{\tau}^2$

Motivation	The Method of Massive Operator Matrix Elements	Results for the Total Cross-Section	Results for the Forward-Backward Asymmetry	Conclusions
0000	0000000	0000	000000	00
<u>Johannes Blümlein</u> High-precision QED initial state corrections for $e^+e^- o \gamma^*/{Z^*}$ annihilation			July 18, 2022	24/26

Conclusions

- We calculated the ISR corrections to the process $e^+e^- \rightarrow \gamma^*/Z^*$ up to $O(\alpha^6 L^5)$.
- This includes the first (up to) three logarithmic terms at lower orders.
- We calculated the leading logarithmic ISR corrections to the forward-backward asymmetry up to $O(\alpha^6 L^6)$.
- The corrections can become important at future e^+e^- machines running at high luminosities.
- The radiators can be used for various processes like $e^+e^- o t \, \overline{t}$ and $e^+e^- o Z H$.

Outlook

- Provide the QED 'PDFs', not only radiators.
- The massless Drell-Yan cross sections are known up to $\mathcal{O}(lpha^3)$

 \Rightarrow An extension to the first four logarithmic orders is possible, but needs the calculation the operator matrix elements up to $O(\alpha^3)$ and the 4-loop splitting functions.

- The technique can be extended to subleading logarithmic corrections of A_{FB}.
- The method can be extended to QCD to study e.g. the heavy-quark initiated Drell-Yan process.

July 18, 2022