Elliptic and Kummer-elliptic Integrals in higher
order calculations in QFT

Johannes Bliimlein

DESY, Zeuthen

J. Bliimlein et al. Phys.Lett. B791 (2019) 206; arXiv:1903.06155;
J. Ablinger et al. J.Math.Phys. 59 (2018) no.6, 062305; PoS LL2018 (2018) 017.

Modular forms, periods and scattering amplitudes, ETH Ziirich, April, 2019

1/34



Introduction

One of the main and difficult issues in high energy physics is the
calculation of involved multi-dimensional integrals.

In the following our attitude will be their analytic integration.

For quite some classes of integrals, particularly at lower order in the
coupling constant, quite a series of analytic computational methods exist.
cf. e.g. CPC 202 (2016) 33 [arXiv:1509.08324] for the algorithms.

» Hypergeometric functions.
» Mellin-Barnes representations.

» In the case of convergent massive 3-loop Feynman integrals, they
can be performed in terms of Hyperlogarithms [Generalization of a

method by F. Brown, 2008, to non-vanishing masses and local operators].
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Introduction

» Summation methods based on difference fields, implemented in the
Mathematica program Sigma [C. Schneider, 2005-].

>

>

>

Reduction of the sums to a small number of key sums.

Expansion of the summands in ¢.

Simplification by symbolic summation algorithms based on MX-fields
[Karr 1981 J. ACM, Schneider 2005-].

Harmonic sums, polylogarithms and their various generalizations are
algebraically reduced using the package HarmonicSums [Ablinger
2010, 2013, Ablinger, Bliimlein, Schneider 2011,2013].

» Systems of Differential Equations. Nucl.Phys. B939 (2019) 253
[arXiv:1810.12261]
» Almkvist-Zeilberger Theorem as Integration Method.
[Multi-Integration]
In the following we will concentrate on the method of Differential
Equations since these are automatically obtained from the
integration-by-parts identities representing all integrals by the so-called
master integrals.
These may either be considered directly or in terms of difference
equations obtained through a formal power-series ansatz or a Mellin
transform.
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Introduction

Starting from the most simple cases and moving to gradually more and
more involved (massive) topologies one observes:

>

>

The lower order topologies correspond to differential or difference
equation systems which are first order factorizable.

Here, a wider class of solution methods exists. There are methods in
both cases to constructively find all letters of the alphabet needed to
express the solutions in terms of indefinitely nested sums or iterative
integrals.

Later also differential or difference equations occur which contain
genuine higher than 1st order factors.

The first example are > F; solutions. In special cases these are also
elliptic solutions.

In the latter case one may represent the solutions in terms of
modular functions and in more special cases in terms of modular
forms and therefore in polynomials of Lambert-Eisenstein series
(elliptic polylogarithms).
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Nested Sums & lterative Integrals

Indefinitely nested sums:

N ky km—1
SN =" s(ka) > s(ka)- Y s(km)
k=1 kp=1 km=1

Iterated integrals:

F(x) = /OX dyr1fi(y1) /On dy>fa(y2)... /oyl_l dyifi(yr)

Mellin transform:
1
ansu(/v):/ dxxM T (x)
o 0

.. much more to say about the historic development, cf. e.g. J. Ablinger, JB, C. Schneider,

1304.7071, 1310.5645
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Function Spaces

Sums Integrals
Harmonic Sums Harmonic Polylogarithms
(=1 dy

; g / /0 1+z

gen Harmonlc Sums gen. Harmonlc Polylogarithms
(1/2 dy

SRS e e

Cycl Harmomc Sums Cycl. Harmonic Polylogarithms

Nooog (-1) X dy Y dz

Z(2k+1)z 3 /o 1+y2/0 1—z+22

Binomial Sums root-valued iterated integrals

EhCer  [2f
k:1k2 k o ¥ Jo zvl+z
iterated integrals on CIS fct.
F {%7 % . X2(X2 _ 9)2}
(e +3)

Special Numbers
multiple zeta values

1 L13(x)
dx —2Lig(1/2
| a2 = i/ +
gen. multiple zeta values
L In(x+2)
dx—— = = Liy(1/3
/0 Ty
cycl. multiple zeta values

_Z 2k+1)2

assoaated numbers

Hs u, = 2arccot(V7)?

associated num bers

[ a5 2GS

shuffle, stuffle, and various structural relations —> algebras
Except the last line integrals, all other ones stem from 1st

order factorizable equations.
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The world until ~ 1997

Calculations up to ~ 2 Loops massless and single mass:

>
>
>

Express all results in terms of Li,(z) = [ dxLin—1(x)/x, Lio(x) = x/(1 — x).,
and possibly s, .(z) = (—1)""7/(pl(n — 1)) [} dx InP~1(x) In"(1 — xz) /x.

The argument z = z(x) becomes a more and more complicated
function.

covering algebras of wider function spaces were widely unknown in
physics, despite they were known in mathematics ...

The complexity of expressions grew significantly, calling urgently for
mathematical extensions.

More complex argument structures do not easily allow an analytic
Mellin inversion.

Extremely long expressions are obtained, which would be much more
compact, using adequate mathematical functions.

Somewhen, new functions appeared: [ZdxLis(x)/(1 + x) not fitting into
this frame.
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Spill-Off: New Function Classes and Algebras

>
>
>

1998: Harmonic Sums [Vermaseren; JB]
1999: Harmonic Polylogarithms [Remiddi, Vermaseren]

2000,2003, 2009: Analytic continuation of harmonic sums,
systematic algebraic reduction; structural relations [JB]

2001: Generalized Harmonic Sums [Moch, Uwer, Weinzierl]

2004: Infinite harmonic (inverse) binomial sums [Davydychev,
Kalmykov; Weinzierl]

2011: (generalized) Cyclotomic Harmonic Sums, polylogarithms and
numbers [Ablinger, JB, Schneider]

2013: Systematic Theory of Generalized Harmonic Sums,
polylogarithms and numbers [Ablinger, JB, Schneider]

2014: Finite nested Generalized Cyclotomic Harmonic Sums with
(inverse) Binomial Weights [Ablinger, JB, Raab, Schneider]

2014-: Elliptic integrals with (involved) rational arguments.
now: More-scale problem: Kummer-elliptic integrals

Particle Physics Generates NEW Mathematics.
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Decoupling of Systems

» We consider linear systems of N inhomogeneous differential
equations and decouple them into a single scalar equation 4+ (N — 1)
other determining equations.

» Usually one may use a series ansatz (4 In“(x) modulation)

f(x)= a(k)xk
k=1
and obtain
3" pk(N)F(N + k) = G(N)
k=0

» The latter equation is now tried to be solved using difference-field
techniques.

» If the equation has successive 1st order solutions one ends up with a
nested sums solution. All these cases have been algorithmized.
[arXiv:1509.08324 [hep-ph]].

» This even applies for some cases ending up elliptic in x-space
[arXiv:1310.5645 [math-ph]].
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Master integrals for the p-parameter @ O(a?)

Example : One usually has no Gaussian differential equation, but
something like Heun or more general, i.e. with more than 3 singularities.

d? 9 —30x2 +5x* d 8(—3 + x?)

R | ) Pl I P VK

Homogeneous solutions:

2002 _ 1\2(,2 _ )2 4 5
?Ag)(x) = 235 % (x (lel-(?»);“ 9 25{3723;2]
2002 _ 1\2(s2 _ 0)2 45
vi(x) = V2v3rs & (X211r(3>;4 2 2F1{3’23;1—Z},
with
xz(x2—9)2
220 = iy

Use contiguous relations first to get into the ball-park. = at least two differently

indexed >F;'s are going to appear. All classical »F; wisdom is always applied first.
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When can ,F;-Solutions be mapped to Complete Elliptic

Integrals?

Table:

(51 (& & 1) G 1)
N N
(351 G50 D (11D Gy

(4, %;1) E

276 \G

G3:1)
Figure 1: The transformation of special o F; functions under the triangle group.

1 d R f
A 2 1 4x(1 — x)
B |2 | 1-x"1/6 12/~ 1)
c 2| a=-x"1/8 12/ - 1)
D |2 | 1-x"1/12 L2/ - 1)
E | 2| (1=x/2~1/2 x2/(x — 2)2
F |3 | @+30-1/4 27x(1 — x)2 /(1 + 3x)3
G | 3| @+wnl/2 1— (x4 w)d/(x +@)3
H | a4 | (1—8x/9)~1/4 | 6ax3(1 — x)/(9 — 8x)3

The functions R and f for the different hypergeometric transformations of degree d; w2 + w + 1 = 0.

zFlr;b?X] = R(X)z’i{

al, b’

<

i f (x)}



Master integrals for the p-parameter @ O(a?)

d72f () + 9-30x"+5x* d (x) 8(—3 + x?)
dx?'%? x(x2 = 1)(9 — x2) dx (9—x2)(x2 —1)

fa(x) = lsa(x)
Homogeneous solutions:

VvV1—3xvx+1
227

V1—-—3xy/x+1
2421
16x3

= m [This function is not at all random! (see later)].

O(x) = (x+1) (3x° + 1) E(z) — (x — 1)’(3x + 1)K(2)

O = 8x°K(1—z) — (x+1) 3 + 1) E(1 — 2)

)

K, E are the complete elliptic integrals of the 1st and 2nd kind.

2 11 2 1.1
K(z):7rzl-_1{212;z}7 E(z):ﬂﬂﬂ[2 1 2;z}

Ig, contains rational functions of x and HPLs.
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Solutions with a Singularity

Homogeneous Solution:

T T B S T T T TS S F S S S S S R B S B RS
02f—_ - S Joof ————_ e
I ~ ~<
I ~
i N | osE
I N X
o1} | L i
! S~ -1oF
i \\\
I N
S~ S~ s
=< T
b i
I
| 20F
_o1l
|25
| aof
-02f 41 L
00 02 04 06 08 10 00 02 04 06 08 10

Inhomogeneous Solution

90 =009 | - [ 00 e 00 | @ - [ sl g

Cip:  from physical boundary conditions.
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Series Solution

3352 3t 358 358 70x10 eesx!? o et
-3 + (12 - —

fRalx) = - = = = _
§ 108 486 4374 13122 59049 1062882 3
1 12 -iz
80 8x® 320 1s2x e 6 5 A ad aed
- - — - Im [Li3 -1+ — - — —
7 8l 729 6561 V3 9 243 6561

59049 2657205

420 238 1070 277312 @ (!
+ — ¥ ( )

— + + + -
6 81 2187 19683 885735

214x10 554612
3

2 4 6 8 10 12 4 6

x x M X 2x 10x 5x 11
G- - In2(3) — (3332 — — — —
4 18 162 48 2187 39366 4 54
19x8  751x10 2207412 a2 et exd a8 3210 15p 12
324 29160 164025 3 27 243 720 6561 59049

o ot b B 1edd red?y gy 1 135 5
2t —+— — —+ W (7> In(x) + — + 19x
9 8l 243 2187 19683 3 16

43x%  80x0  1493x®  132503x10 202413112 (x4 2) N
— 122 ) In?(x)

48 324 23328 5248800 236196000 2

—22n3(x) + 0 (x* )

The solution can be easily extended to accuracies of O(1073°) using
Mathematica or Maple.
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Solutions with a Singularity

2 002 -
001 |-
2 /-
£ b ]
2| g i
| = O
wof ]
0011 //
— . ‘ ool ‘
00 02 04 06 08 10 00 01 02 03 04
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Non-iterative lterative Integrals

A New Class of Integrals in QFT:

LY
2
Y
3

|
ot
-~

Y
3

o
3
)
<
3
=
-~
Y
3
I
i
B
Q

—

=

Il

X Y1 Ym—1
/ dy1fa (y1) / dys... / dymTan, (Ym)
0 0 0

XFm[r(Ym)]Ham+1,...,aq (}’m+1)7

1
/O dzg(z,r(y)), r(y) € Qlyl,

Flr(y)]

In general, this spans all solutions and the story would end here.

May be, most of the practical physicists, would led it end here anyway.
This type of solution applies to many more cases beyond , F;-solutions
(if being properly generalized).

[JB, ICMS 2016, July 2016, Berlin]

If one has no elliptic solution, one has to see, what else one has, and
whether these cases are known mathematically as closed form solutions,
with which properties etc. etc.

In the elliptic case we proceed as follows.

16/34



n-Ratios
Map:

x = q:q=-exp[-7TK(1l — z(x))/K(z(x)] := exp[in7], |q| <1
i) = a2z [L( - o)
k=1

il 1
D) = ——M, meZ
)

» Every 7-ratio can be separated into a modular form M and a factor
k(7). [Algorithm 1]

» For the n-ratio M is given as a polynomial of (generalized)
Lambert-Eisenstein series. [Algorithm 2]

» All M can be mapped into polynomials out of In(q), Lig(¢’), and
elliptic polylogarithms (of higher weight and also with indices
depending on q).
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Elliptic Polylogarithms as a Frame

x

ELin;m(X§ Y Cl) =

>~
Il
i
Il
N

gk
gk
x|
Elh
-Q)r

Weinzierl et al.:

%[ELi,,;m(x; yiq) — ELi,,;,-,,(x_l; y~ L q)], n+m even

Enm(xiyiq) = {
ELinm(x;y; q) + ELinm(x " y™%q), n+m odd.

Multiplication:

ELiny, .. njimy,...,mi0,200,...,20y 1 (XU, ey Xi Y1, -y Y13 @) = ELipy;my (x15 y15 q)

ELiny,...,n5imy,...m20p,...,201_1 (X2 oy X3 Y25 o0y Y11 Q)

oo oo oo oo i i kK
ELi . ) — ooyt oy
in oonpmy e mp2oy,. 20 g (XLs oo XYL, Y5 q) = AL A T
=l jmlig=1l k=1J1 Jim K 1

gLkt tark

X —— - -, 1> 0.
[To Giki + oo+ ike)ei

Synchronization: performed for Lambert-Eisenstein series ¢” — q.

Re-translate after this.
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Elliptic Solutions and Analytic g-Series

Map:
x = q: q = expl-7K(1 — 2(x))/K(z(x)], q| <1

» One attempts to calculate the integrals of the inhomogeneous
solution in terms of g-series analytically.

» |t is expected to write it in terms of products (and integrals over)
elliptic polylogarithms [ and possibly other functions].

» Note that the corresponding results are rather deep multi-series!

» Inspiration from algebraic geometry.

Elliptic polylogarithm (as a partly suitable frame):
ELlnmea JZI;J km

Is it (and its generalizations) a modular form ?
= The central functions turn out to be more special ones.
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The Individual Steps: from IBPs to Closed Form g-Series

>

vy

Generate the master integrals, determine their hierarchy, and look
whether you have only 1st order factorization or also 2nd order terms
The latter can be trivial in case; check whether they persist in Mellin
space

If yes, analyze the 2nd order differential equation

One usually finds a »F;-solution with rational argument r(z), where
r(z) has additional singularities, i.e. the problem is of 2nd order, but
has more than 3 singularities.

Triangle group relations may be used to map the »F; depending on
the rational parameters a,b,c to the complete elliptic integrals or not.
In the latter case return to the formalism on slide 21 and stop.

If yes, one may walk along the g-series avenue.
Different Levels of Complexity:
> 1st order factorization in Mellin space:
24N+1
MIK(L - 2(V) = ———
2
ez (3)
24N+2
M[E(L - 2)(NV) =

(1+2N)>2(3 + 2N)(2,\'IV)2
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The Individual Steps: from IBPs to Closed Form g-Series

>

Criteria by Herfurtner (1991), Movasati et al. (2009) are obeyed.
= 2-loop sunrise and kite diagrams, cf. Weinzierl et al. 2014-17.
Only K(r(z)) and K’(r(z)) contribute as elliptic integrals.

Also E(r(z)) and E’(r(2)), square roots of quadratic forms etc.
contribute (present case)

Transform now: x — q.
The kinematic variable x:

k2 _ _X3 _ lﬁg(q)
- (14X -3x)  ¥i(q)
V3 .
319§E2), ie. x€[l,+o00]

by a cubic transformation (Legendre-Jacobi).
[see also Borwein,Borwein: AGM; and Broadhurst (2008).]

Lo7(27)7(37)

) 1
———————=, singular,x —
3 n?(r)n*(67) q
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The Individual Steps: from IBPs to Closed Form g-Series

» Map to a Modular Form, which can be represented by Lambert
Series

> How to find the n-ratio 7 = Many are listed as sequences in
Sloan’s OEIS.

» To find a modular form, situated in a corresponding
finite-dimensional vector space My one has to meet a series of
conditions and usually split off a factor 1/7*(7), k > 0.

> The remainder modular form is now a polynomial over Q of
Lambert-Eisenstein series

i mnqan+b
_ pant+b
n=0 1 q ’
Example:
K(z(x)) = P 1 + g2

k=1

> In this case, two g series are equal, if both are modular forms, and
agree in a series of k first terms, where k is predicted for each
congruence sub-group of I'(N).
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The Individual Steps: from IBPs to Closed Form g-Series

» Map Lambert-Eisenstein Series into the frame of Elliptic
Polylogarithms
» Examples:

) k 00
T q T . . .
K(Z) = 5 Z 1 + q2k = 7 Z [Llo (qu) — Llo (—qu)}
k=1 k=1

= %70,0(1.317(7)3
LAC)) 1o .

= ——|ELi_1(1;1; ElLi_10(—1:1;

T54(q) 5 [ELi-10(1 1 ) + ELi-y0(~1: 1: g)]

+ [ELigo(1; ™% q) + ELigo(~1;q~*; )]
— [ELi_10(1; g " q) + ELi_1,0(=1;97 % )] -

» New type of elliptic polylogarithm, e.g.:
ELi_10(-1:97%q), y=y(q)!

» Argument synchronization necessary: —q — q, g — g
(cyclotomic).
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Elliptic Solutions and Analytic g-Series

» Terms to be translated:
» rational functions in x

> K,E
> (1-3x)(1+x)
> Hs(x)
Examples:
) ) m?q d
E() = K(K)+ K(kQ)d—qln[mw)}
E'(k?) = 2K7(Tk2) {1+2In(q) q—ln [194(q)]}
1 2

K(k2) = 7”712(7){ > {1—24EL10 1(1;1; q)—4[1— S[ELlo 1(1;1; q) + ELio.—1(1; /; q)

+ELio;1(1;—1;q)+ELio;1(1;—i;CI)H}{ 1+4[—%[EL1 20(i:1/4; q)
+ELi2,0(—i:1/g: )| + [ELi_10(i;1/9: ) + BLi_10(—i: 1/a;a)| — % [ELio.o(:1/: q)
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Elliptic Solutions and Analytic g-Series

1

+ELio,0(—i;1/q; q)H } ~ 16 {5 + 4[—% [ELL4;0(I'; 1/9;q) + ELi—40(—i;1/q; q)]

+2[BLi-30(i: 1/; 9) + ELi—3.0(~:1/d; )| = 3[FLi-20(i;1/3: q)
+ELi_,0(~i11/g:q)] + 2[ELi_10(i;1/9: 9) + BLi_10(—i: 1/d: )
—% [ELio;o(i: 1/q;q) + ELio,o(—i;1/q; q)] } }

H_1(x)=In(1+x) = —In(3q) — Eo.—12(—1;—1;q) + Eo;—1.2(pe; —1; q)
—Eo—12(p3i —i: q) — Eoi—12(p3i 5 q)

Hi(x) = —H-1(X)|,_o +2mi,etc;  pm = exp(2mi/m)

I(q) = 0 -P [In(g), Lio(¢™), ELix s(x, y. ), ELix v (x,q 7", q)]

[ G

is usually not an elliptic polylogarithm, due to the n-factor, but a higher
transcendental function in q.
We are still in the unphysical region and have to map back to x € [0, 1].
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3Gme (0) Qs (1) <a5)2 <(2) 3 )
Ap = — — ) 6
p= 2 (500 + 2000 + (%) 600 + 0(ad)

Ca 11— x? 9 —x? 1
6(2)(X) = .4 Cr (Cﬁ - 7) |:12(17x2)2 faa(x) + 30 =) foa(x) + Eﬁo,a(x)
5 — 3957 1—9x? x?
fe —f
36(1 = 2)2 5b(x) + o1 =7 for(x) + 1ob(x ):|

CrTE 4 2 1-3¢ 4 2
=) |:(5X — 28x° — 9)fg,(x) + e (9x™ 4+ 9x° — 2)fzp(x)

+(9 — xX*)(x* — 6x% — 3)fa,(x) + 1-

2 (3X + 6x° —l)fgb(x):|

52

For x = 0, this agrees with the result by Chetyrkin et al (and Avdeev et al), 6(2)(0) = —3.9696.
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Problems related to more scales at 2 loops

Phase space integrals for:
» massive 2-loop pure-singlet (PS) Wilson coefficient in DIS:
scales: @2, mg

» Drell-Yan QED initial state corrections to ete™ annihilation:

scales: s’ = sz, m?

An alphabet (PS case):

1

fwl(z)(z) = 17 o’
1

fw3(4)(z) = Btz ,
p B 1
W5(6)(Z) B kFx—(1-— x)kz)

1
fw7(8)(z] - kF x+ (1 — x)kz '

z
MO R 20oa))

1

fwo (2) = m 5

z

12 @) AR (@(-2(-2) )
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Kummer-elliptic Integrals

Definition:
Iterated integrals of the alphabet 2

o — AU 1 t V1—k2t?
B VI— 21— k22 V1 — 21— k22’ J1—¢2 '

1
U acC\ {£1,+L }
{(t—a)\/l—t2\/1—k2t2 | o)
with 1/(x —a) € A, a € C, are called letters for Kummer-elliptic
integrals.
The first integrals of the above letters are all logarithmic; further
integrals from some level on are not. E.g.:
_$2
arctanh [\"/17%] — arctanh [£]
(1— k2)kz

le(t) =

The spanning basis is found
» by rationalizing all occurring integrals as widely as possible
» and by using a Risch-like algorithm afterwards.
The phase space integrals are now fully available in terms of iterative
integrals. 28/34



complete Wilson coefficient

2)ps Lo g 7,0 Q) _ A1 -2)Py
H'™ = SPY ok ) e

= Hyyo + HiH,, — HoHy,)

8Py 8Py
g (M, — ) = S, +

L 7eru(
—m

Hug -1 — Hug g + HiHyy — HoyHy,) +

+2(Huy sy + Hupgoy + Hg o+ Ho) + (Huy + oy ) [61n(k) + In(k? = 27)]
+h(1 = 2) (Hug o + Huor = Hurog = Hungoy = Huy Huy = HogHo, + Ho Ho
-HMHM)] + &(HM + Hy,) [In (1= #%) +2In (K = 2] + 2Ha,)

16(1— )Py | 32P,
H L2l Tj“[ﬂn. —HLy— HoHy + Hy, + Hoy + Hoo 1+ Hop,

20-py
e

—(Hi + I-L.)(%m(x = k) +In (W = 2) + Hw)]

1= (= 2 (Hus + Hug + Hugn 4 Hu )} + m%,cx)l"“(ﬂw

u(ﬁw —Ho1 - HiH,, +HH,,)

PP e - 2 3 1~ W)

—HH,, +H o Hy,) +

H_Hy — 2H ) —
_16(1—2)8Py
3k

3K
In (1= k) +2In (k¥ = 2) — 6In(k) + 2Hy

8P (12 16Py;
) +

EEE

Huo+ Huo) —

(Ha, + Hu)Ho

["wx ~ Huyo + Hurp = Hugo = (Huy = Hug + Hoy — "m.)"n]

—k (Hu i1 + Hugaon, + Humsy + Huony) + F(Hug + Hoy + Hy, + H,.,)H,.,‘>

20, + Mg, = (1= Husg + Huspr = Hups

+2k(1 - k)=(1

( stz + Hugors + Huorony + Hugung = (Hug + Hu + Hop

2 L 8P

) +2(1- k) H,H,HH,W.)] T

A0 -2PP 41— 2Py

TRk -2)-2) "
(

H bl "
T T T e R T B g (P )
16(1+2) (1 - 3K2) 22

-l

In(k? = 22) +16(1 — 2) (In(1 — 2) + In(2))

+3z(x(1 N o (et (:. k‘)“’) m(m] (Hy+Hoy)

2K + (3K — 1)z
’Skiz[

AHos +4Hy 1y = 200y = 4Hy, = 4H
A 10— A1 A a0 = S g = 4H 0 — 16H 0+ 4H
AL g = 16H 4, = 20, 20 - 20 ) Hy
+2(—4Hoyy + Hf — H2, 4 2HH ) Hy, + (4H oy — 5H2, + 5H} — 4Hy,
—AHy g — AH,, — AH,, ) Hy o+ (AHH, — B 4 4H,,,, 4 4H,, o+ 120,
+5H2 ) Hoy — [In (1= k) = In(k? — 2%) + 21n (K
1601 —

(4H_p; + H2, — H} - 2H  H))

FH g + Hsgger + Hisogany = Hug 4 Hug

~ Hugust + Hugus, -1 = Hur st + Hurg, 1 + Hur 11

= Hug g1 + Hug g1 + Hu ~H g

“Ho e~ Hotgsnen + F (B ey + Husig + Humr + Hug

—Huygws — Hun g = o sogior = Hun g oy + Hug 100 = Hu 100 + Hug g0
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Kummer-elliptic integrals

Why are these representations important ?
» Complete and irreducible analytic results.
» Stable starting point for expansions in small ratios of invariants.

» Led to a clarification of the ISR O(a?) corrections in eTe™
annihilation recently. [Want to have this in correct form for new
high-luminosity acceleration projects (ILC, Fcc_ee etc.).]

Expansions :
» Expansions in m2/s or m?/@Q? lead to prefactors which are usual
HPLs

» Possibility to map to Mellin-/N space (e.g. for fast evolution
programs).

» In case of more scales — lower complexity (iterative) integrals
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ISR

corrections to eTe~ annihilation
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Flgu FE. Relative deviations of the results of Berends et al. 1987 from the exact result in % for the O(az) corrections. The
both contributions (process IV): dots; for s = M%, Mz = 91.1879 GeV.

non-singlet contribution (process Il): dash-dotted line; the pure singlet contribution (process I1): dashed; the interference term between

855 (2012) 508.

[1] Berends, Burgers, van Neerven, Nucl. Phys. B 297 (1988) 429.
[2] now confirmed: J. Bliimlein, A. De Freitas and W.L. van Neerven, Nucl. Phys. B
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Conclusions

» We have automated the chain from IBPs to 2nd order solutions
within the theory of differential equations [Before we had solved the
1st order factorizing cases for whatsoever basis of Mls.]

» General solution in the case not 1st order factorizing:
Non-iterative iterative integrals H.

» These solutions might be sufficient and are very precise numerically
and the result has a compact representation.

» In the elliptic cases we were enforced to generalize to structures not
yet appearing in the case of the sunrise/kite integrals.

» Modular forms need to become a manifest part of knowledge for
particle physicist working on fundamental QFTs.

» Any 7 ratio. can be solved.
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Conclusions

» The general solution is given in terms of polynomials of elliptic
polylogarithms, more precisely: Lambert-Eisenstein series and a few
simpler functions in g-space

» What comes next ? Abel integrals ? K3 surfaces (Kummer, K&hler,
Kodaira), Calabi-Yau structures...?

» Phase space integrals usually lead to incomplete elliptic integrals
(and related more complex functions). Their occurrence is triggered
by more scales.

» These structures form iterative integrals.

» Expanding in appropriate scale-ratios leads to simpler structures
down to HPLs and may be used for numerical representations (in
some cases).
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