3-Loop Heavy Flavor Corrections to DIS: an Update

PDF4LHC meeting Geneva, CH
Johannes Blümlein | November 14, 2023

Based on:

- A. Behring, J.B., and K. Schönwald, The inverse Mellin transform via analytic continuation, JHEP 06 (2023) 62.
- J. Ablinger et al., The first-order factorizable contributions to the three-loop massive operator matrix elements $A_{Q g}^{(3)}$ and $\Delta A_{Q g}^{(3)}, 2311.00644$ [hep-ph]
In collaboration with:
J. Ablinger, A. Behring, A. De Freitas, A. von Manteuffel, C. Schneider, K. Schönwald

Unpolarized Deep-Inelastic Scattering (DIS):

Structure Functions: $F_{2, L}$ contain light and heavy quark contributions.
At 3-Loop order also graphs with two heavy quarks of different mass contribute.
\Longrightarrow Single and 2-mass contributions: c and b quarks in one graph.

Factorization of the Structure Functions

At leading twist the structure functions factorize in terms of a Mellin convolution

$$
F_{(2, L)}\left(x, Q^{2}\right)=\sum_{j} \underbrace{\mathbb{C}_{j,(2, L)}\left(x, \frac{Q^{2}}{\mu^{2}}, \frac{m^{2}}{\mu^{2}}\right)}_{\text {perturbative }} \otimes \underbrace{f_{j}\left(x, \mu^{2}\right)}_{\text {nonpert. }}
$$

into (pert.) Wilson coefficients and (nonpert.) parton distribution functions (PDFs).
\otimes denotes the Mellin convolution

$$
f(x) \otimes g(x) \equiv \int_{0}^{1} d y \int_{0}^{1} d z \delta(x-y z) f(y) g(z)
$$

The subsequent calculations are performed in Mellin space, where \otimes reduces to a multiplication, due to the Mellin transformation

$$
\hat{f}(N)=\int_{0}^{1} d x x^{N-1} f(x)
$$

Wilson coefficients:

$$
\mathbb{C}_{j,(2, L)}\left(N, \frac{Q^{2}}{\mu^{2}}, \frac{m^{2}}{\mu^{2}}\right)=C_{j,(2, L)}\left(N, \frac{Q^{2}}{\mu^{2}}\right)+H_{j,(2, L)}\left(N, \frac{Q^{2}}{\mu^{2}}, \frac{m^{2}}{\mu^{2}}\right) .
$$

At $Q^{2} \gg m^{2}$ the heavy flavor part

$$
H_{j,(2, L)}\left(N, \frac{Q^{2}}{\mu^{2}}, \frac{m^{2}}{\mu^{2}}\right)=\sum_{i} C_{i,(2, L)}\left(N, \frac{Q^{2}}{\mu^{2}}\right) A_{i j}\left(\frac{m^{2}}{\mu^{2}}, N\right)
$$

[Buza, Matiounine, Smith, van Neerven 1996]
factorizes into the light flavor Wilson coefficients C and the massive operator matrix elements (OMEs) of local operators O_{i} between partonic states j

$$
A_{i j}\left(\frac{m^{2}}{\mu^{2}}, N\right)=\langle j| O_{i}|j\rangle .
$$

\rightarrow additional Feynman rules with local operator insertions for partonic matrix elements.
The unpolarized light flavor Wilson coefficients are known up to NNLO [Moch, Vermaseren, Vogt, 2005; JB, Marquard, Schneider, Schönwald, 2022].
For $F_{2}\left(x, Q^{2}\right):$ at $Q^{2} \gtrsim 10 m^{2}$ the asymptotic representation holds at the 1% level.

Introduction

- Massive OMEs allow to describe the massive DIS Wilson coefficients for $Q^{2} \gg m_{Q}^{2}$.
- Furthermore, they form the transition elements in the variable flavor number scheme (VFNS).
- What is known:

Single mass: $A_{q q, Q}^{\mathrm{NS}}, A_{q g, Q}, A_{q q, Q}^{\mathrm{PS}}, A_{g q, Q}, A_{Q q}^{\mathrm{PS}}, A_{g g, Q}, A_{Q g}$ to 3-loop order; $A_{Q g}$ to 2-loop order; Two-mass case to 3-loop order $A_{q q, Q}^{\mathrm{NS}}, A_{Q q}^{\mathrm{PS}}, A_{g q, Q}, A_{g g, Q} ; A_{Q g}$ to 2-loop order.

- The same OMEs are also known in the polarized case.
- Objective of this talk: First non-logarithmic results in calculating $A_{Q g}$.
- \Longrightarrow The necessary master integrals
- \Longrightarrow The first-order factorizable contributions to $(\Delta) A_{Q g}$

Inverse Mellin transform via analytic continuation: $a_{Q g}^{(3)}$

Resumming Mellin N into a continuous variable t, observing crossing relations. Ablinger et al. 2014

$$
\begin{gathered}
\sum_{k=0}^{\infty} t^{k}(\Delta \cdot p)^{k} \frac{1}{2}\left[1 \pm(-1)^{k}\right]=\frac{1}{2}\left[\frac{1}{1-t \Delta \cdot p} \pm \frac{1}{1+t \Delta \cdot p}\right] \\
\mathfrak{A}=\left\{f_{1}(t), \ldots, f_{m}(t)\right\}, \quad \mathrm{G}(b, \vec{a} ; t)=\int_{0}^{t} d x_{1} f_{b}\left(x_{1}\right) \mathrm{G}\left(\vec{a} ; x_{1}\right), \quad\left[\frac{d}{d t} \frac{1}{f_{a_{k-1}}(t)} \frac{d}{d t} \cdots \frac{1}{f_{a_{1}}(t)} \frac{d}{d t}\right] \mathrm{G}(\vec{a} ; t)=f_{a_{k}}(t) .
\end{gathered}
$$

Regularization for $t \rightarrow 0$ needed.

$$
\begin{align*}
F(N) & =\int_{0}^{1} d x x^{N-1}\left[f(x)+(-1)^{N-1} g(x)\right] \\
\tilde{F}(t) & =\sum_{N=1}^{\infty} t^{N} F(N) \\
f(x)+(-1)^{N-1} g(x) & =\frac{1}{2 \pi i}\left[\operatorname{Disc}_{x} \tilde{F}\left(\frac{1}{x}\right)+(-1)^{N-1} \operatorname{Disc}_{x} \tilde{F}\left(-\frac{1}{x}\right)\right] . \tag{1}
\end{align*}
$$

t-space is still Mellin space. One needs closed expressions to perform the analytic continuation (1).
Continuation is needed to calculate the small x behaviour analytically.

Harmonic polylogarithms

$$
\begin{gathered}
\mathfrak{A}_{\mathrm{HPL}}=\left\{f_{0}, f_{1}, f_{-1}\right\}\left\{\frac{1}{t}, \frac{1}{1-t}, \frac{1}{1+t}\right\} \\
\mathrm{H}_{b, \overrightarrow{\mathrm{a}}}(x)=\int_{0}^{x} d y f_{b}(y) \mathrm{H}_{\vec{a}}(y), f_{c} \in \mathfrak{A}_{\mathrm{HPL}}, \mathrm{H}_{\underbrace{0 \ldots, \ldots}_{k}}(x):=\frac{1}{k!} \ln ^{k}(x) .
\end{gathered}
$$

A finite monodromy at $x=1$ requires at least one letter $f_{1}(t)$.
Example:

$$
\begin{gathered}
\tilde{F}_{1}(t)=\mathrm{H}_{0,0,1}(t) \\
F_{1}(x)=\frac{1}{2} \mathrm{H}_{0}^{2}(x) \\
\mathbf{M}\left[F_{1}(x)\right](n-1)=\frac{1}{n^{3}} \\
\tilde{F}_{1}(t)=t+\frac{t^{2}}{8}+\frac{t^{3}}{27}+\frac{t^{4}}{64}+\frac{t^{5}}{125}+\frac{t^{6}}{216}+\frac{t^{7}}{343}+\frac{t^{8}}{512}+\frac{t^{9}}{729}+\frac{t^{10}}{1000}+O\left(t^{11}\right)
\end{gathered}
$$

Square root valued alphabets

$$
\begin{aligned}
\mathfrak{A}_{\mathrm{sqrt}} & =\left\{f_{4}, f_{5}, f_{6} \ldots\right\} \\
& =\left\{\frac{\sqrt{1-x}}{x}, \sqrt{x(1-x)}, \frac{1}{\sqrt{1-x}}, \frac{1}{\sqrt{x} \sqrt{1 \pm x}}, \frac{1}{x \sqrt{1 \pm x}}, \frac{1}{\sqrt{1 \pm x} \sqrt{2 \pm x}}, \frac{1}{x \sqrt{1 \pm x / 4}}, \ldots\right\},
\end{aligned}
$$

Monodromy also through:

$$
\begin{aligned}
&(1-t)^{\alpha}, \quad \alpha \in \mathbb{R}, \\
& F_{7}(x)= \frac{1}{\pi} \operatorname{lm} \frac{1}{t} \mathrm{G}\left(4 ; \frac{1}{t}\right)=1-\frac{2(1-x)(1+2 x)}{\pi} \sqrt{\frac{1-x}{x}}-\frac{8}{\pi} \mathrm{G}(5 ; x), \\
& F_{8}(x)= \frac{1}{\pi} \operatorname{lm} \frac{1}{t} \mathrm{G}\left(4,2 ; \frac{1}{t}\right)=-\frac{1}{\pi}\left[4 \frac{(1-x)^{3 / 2}}{\sqrt{x}}+2(1-x)(1+2 x) \sqrt{\frac{1-x}{x}}\left[\mathrm{H}_{0}(x)+\mathrm{H}_{1}(x)\right]\right. \\
&+8[\mathrm{G}(5,2 ; x)+\mathrm{G}(5,1 ; x)]],
\end{aligned}
$$

Iterative non-iterative Integrals

- Master integrals, solving differential equations not factorizing to 1st order
- ${ }_{2} F_{1}$ solutions Ablinger et al. [2017]
- Mapping to complete elliptic integrals: duplication of the higher transcendental letters.
- Complete elliptic integrals, modular forms Sabry, Broadhurst, Weinzierl, Remiddi, Tancredi, Duhr, Broedel et al. and many more
- Abel integrals
- K3 surfaces Brown, Schnetz [2012]
- Calabi-Yau motives Klemm, Duhr, Weinzierl et al. [2022]

Refer to as few as possible higher transcendental functions, the properties of which are known in full detail.

- $A_{Q g}^{(3)}$: effectively only one 3×3 system of this kind.
- The system is connected to that occurring in the case of ρ parameter. Ablinger et al. [2017], JB et al. [2018], Abreu et al. [2019]
- Most simple solution: two ${ }_{2} F_{1}$ functions.

Iterative non-iterative Integrals

$$
\frac{d}{d t}\left[\begin{array}{c}
F_{1}(t) \\
F_{2}(t) \\
F_{3}(t)
\end{array}\right]=\left[\begin{array}{rrr}
-\frac{1}{t} & -\frac{1}{1-t} & 0 \\
0 & -\frac{1}{t(1-t)} & -\frac{2}{1-t} \\
0 & \frac{2}{t(8+t)} & \frac{1}{8+t}
\end{array}\right]\left[\begin{array}{c}
F_{1}(t) \\
F_{2}(t) \\
F_{3}(t)
\end{array}\right]+\left[\begin{array}{l}
R_{1}(t, \varepsilon) \\
R_{2}(t, \varepsilon) \\
R_{3}(t, \varepsilon)
\end{array}\right]+O(\varepsilon),
$$

It is very important to which function $F_{i}(t)$ the system is decoupled.

Iterative non-iterative Integrals

- Decoupling for F_{1} first leads to a very involved solution: ${ }_{2} F_{1}$-terms seemingly enter at $O(1 / \varepsilon)$ already.
- However, these terms are actually not there.
- Furthermore, there is also a singularity at $x=1 / 4$.
- All this can be seen, when decoupling for F_{3} first.

Homogeneous solutions:

$$
\begin{gathered}
F_{3}^{\prime}(t)+\frac{1}{t} F_{3}(t)=0, \quad g_{0}=\frac{1}{t} \\
F_{1}^{\prime \prime}(t)+\frac{(2-t)}{(1-t) t} F_{1}^{\prime}(t)+\frac{2+t}{(1-t) t(8+t)} F_{1}(t)=0,
\end{gathered}
$$

with

$$
\begin{aligned}
& g_{1}(t)=\frac{2}{(1-t)^{2 / 3}(8+t)^{1 / 3}} 2^{2} F_{1}\left[\begin{array}{c}
\frac{1}{3}, \frac{4}{3} ;-\frac{27 t}{(1-t)^{2}(8+t)}
\end{array}\right], \\
& g_{2}(t)=\frac{2}{(1-t)^{2 / 3}(8+t)^{1 / 3}} 2^{2} F_{1}\left[\begin{array}{c}
\frac{1}{3}, \frac{4}{3} \\
\frac{2}{3}
\end{array} 1+\frac{27 t}{(1-t)^{2}(8+t)}\right],
\end{aligned}
$$

Iterative non-iterative Integrals

Alphabet:

$$
\begin{aligned}
\mathfrak{A}_{2}= & \left\{\frac{1}{t}, \frac{1}{1-t}, \frac{1}{8+t}, g_{1}, g_{2}, \frac{g_{1}}{t}, \frac{g_{1}}{1-t}, \frac{g_{1}}{8+t}, \frac{g_{1}^{\prime}}{t}, \frac{g_{1}^{\prime}}{1-t}, \frac{g_{1}^{\prime}}{8+t}, \frac{g_{2}}{t}, \frac{g_{2}}{1-t}, \frac{g_{2}}{8+t}, \frac{g_{2}^{\prime}}{t}, \frac{g_{2}^{\prime}}{1-t},\right. \\
& \left.\frac{g_{2}^{\prime}}{8+t}, t g_{1}, t g_{2}\right\} \\
F_{1}(t)= & \frac{8}{\varepsilon^{3}}\left[1+\frac{1}{t} \mathrm{H}_{1}(t)\right]-\frac{1}{\varepsilon^{2}}\left[\frac{1}{6}(106+t)+\frac{(9+2 t)}{t} \mathrm{H}_{1}(t)+\frac{4}{t} \mathrm{H}_{0,1}(t)\right] \\
& +\frac{1}{\varepsilon}\left\{\frac{1}{12}(271+9 t)+\left[\frac{71+32 t+2 t^{2}}{12 t}+\frac{3 \zeta_{2}}{t}\right] \mathrm{H}_{1}(t)+\frac{(9+2 t)}{2 t} \mathrm{H}_{0,1}(t)+\frac{2}{t} \mathrm{H}_{0,0,1}(t)\right. \\
& \left.+3 \zeta_{2}\right\}+\frac{1}{t}\left\{\frac{6696-22680 t-16278 t^{2}-255 t^{3}-62 t^{4}}{864 t}+\left(9+9 t+t^{2}\right) g_{1}(t)\left[\frac{31 \ln (2)}{16}\right.\right. \\
& \left.+\frac{1}{144}(265+31 \pi(-3 i+\sqrt{3}))+\frac{3}{8} \ln (2) \zeta_{2}+\frac{1}{24}(10+\pi(-3 i+\sqrt{3})) \zeta_{2}-\frac{7}{4} \zeta_{3}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +\mathrm{G}(18, t)\left[-\frac{93 \ln (2)}{16}+\frac{1}{48}(-265-31 \pi(-3 i+\sqrt{3}))+\left(-\frac{9 \ln (2)}{8}\right.\right. \\
& \left.\left.+\frac{1}{8}(-10-\pi(-3 i+\sqrt{3}))\right) \zeta_{2}+\frac{21}{4} \zeta_{3}\right] \ldots \\
& +\frac{5}{2}[\mathrm{G}(4,14,1,2 ; t)-\mathrm{G}(5,8,1,2 ; t)]+\frac{1}{4}[\mathrm{G}(13,8,1,2 ; t)-\mathrm{G}(7,14,1,2 ; t)] \\
& \left.+\frac{9}{4}[\mathrm{G}(10,14,1,2 ; t)-\mathrm{G}(16,8,1,2 ; t)]+\frac{3}{4}[\mathrm{G}(19,14,1,2 ; t)-\mathrm{G}(19,8,1,2 ; t)]\right\}+\mathrm{O}(\varepsilon), \\
F_{2}(t)= & \frac{8}{\varepsilon^{3}}+\frac{1}{\varepsilon^{2}}\left[-\frac{1}{3}(34+t)+\frac{2(1-t)}{t} \mathrm{H}_{1}(t)\right]+\frac{1}{\varepsilon}\left[\frac{116+15 t}{12}+3 \zeta_{2}-\frac{(1-t)(8+t)}{3 t} \mathrm{H}_{1}(t)\right. \\
& \left.-\frac{1-t}{t} \mathrm{H}_{0,1}(t)\right]+\frac{992-368 t+75 t^{2}-27 t^{3}}{144 t}+(1-t)\left(\frac{\left(43+10 t+t^{2}\right)}{12 t} \mathrm{H}_{1}(t)+\frac{(4-t)}{4 t}\right. \\
& \left.\times \mathrm{H}_{0,1}(t)+\frac{3 \zeta_{2}}{4 t} \mathrm{H}_{1}(t)\right)+(1-t) g_{1}(t)\left(\frac{31 \ln (2)}{16}+\frac{1}{144}(265+31 \pi(-3 i+\sqrt{3})) \ldots\right.
\end{aligned}
$$

Essential step for calculating $a_{Q g}^{(3)}$ completely.

1st order factorizing contributions: $a_{Q g}^{(3)}$

- 1009 of 1233 contributing Feynman diagrams
- Solved: N_{F}-terms, ζ_{2}, ζ_{4} and B_{4} terms, unpolarized and polarized.
- Contributions to the rational and ζ_{3} terms:
- The sum of the contributions vanishes for $N \rightarrow \infty$, while the individual terms $\propto 1$ and $\propto \zeta_{3}$ do strongly diverge.
- Dynamical generation of a factor of ζ_{3}.
- Calculated asymptotic expansions in N space: harmonic sums, generalized harmonic sums, binomial sums
- Appearance of a large set of special numbers given as G-functions at $x=1$
- individually divergent contributions for $N \rightarrow \infty: \propto 2^{N}, 4^{N}$ cancel between the different terms
- Calculated inverse Mellin transforms: requires the use of the t-variable method in the most involved cases for nested binomial sums.

Structure in \boldsymbol{x} space of the 1st order reducible terms

Expansion around $x=1$:

$$
\sum_{k=0}^{\infty} \sum_{l=0}^{L} \hat{a}_{k, l}(1-x)^{k} \ln ^{\prime}(1-x) .
$$

Expansion around $x=0$:

$$
\frac{1}{x} \sum_{k=0}^{\infty} \sum_{l=0}^{s} \hat{b}_{k, l} X^{k} \ln ^{\prime}(x) .
$$

Expansion around $x=1 / 2$:

$$
\sum_{k=0}^{\infty} \hat{c}_{k}\left(x-\frac{1}{2}\right)^{k} .
$$

Wide double precision overlaps of the expansions around $x=2 / 10$ and $x=7 / 10$ by using 100 expansion terms.

Structure in x space

- The analytic results on the expansion coefficients contain iterated integrals over up to root-valued letters at main argument $x=1$.
- One may rationalize the letters of these constants and switch to linear representations.
- This results into enormous numbers of Kummer-Poincaré integrals, which are calculated to 100 digits.

Unpolarized case:

- ζ_{2} term of the predicted $\ln (x) / x$ small x expansion confirmed Catani, Ciafaloni, Hautmann, 1991

Polarized case:

- Evanescent $\ln (x) / x$ and $1 / x$ terms occur.
- One has to show their cancellation. Many special constants are involved here.
- New $\ln ^{5}(x)$ term $\propto N_{F}$ found.

$a_{Q g}^{(\text {fact.,3) }}$

The first order factorizable contributions to $a_{Q g}^{(3)}(N)$. Full line (blue): $x<0.2$; Full line (green): $0.2<x<0.7$; Full line (blue): $0.7<x<1$ for $m_{c}=1.59 \mathrm{GeV}$ and $N_{F}=3$.

$\Delta a_{Q g}^{(f a c t ., 3)}$

The first order factorizable contributions to $\Delta a_{Q g}^{(3)}(N)$. Full line (blue): $x<0.2$; Full line (green): $0.2<x<0.7$; Full line (blue): $0.7<x<1$ for $m_{c}=1.59 \mathrm{GeV}$ and $N_{F}=3$.

Current summary on $F_{2}^{\text {charm }}$

An example to show numerical effects: the charm quark contributions to the structure function $F_{2}\left(x, Q^{2}\right)$

for $Q^{2}=100 \mathrm{GeV}^{2}$.
x
Allows to strongly reduce the current theory error on m_{c}.
Started ~ 2009; will be completed soon.
Lots of new algorithms had to be designed; different new function spaces; new analytic calculation techniques.

Conclusions

- All unpolarized and polarized single and two-mass OMEs, except the ones for $A_{Q g}^{(3)}$, and the associated massive Wilson coefficients for $Q^{2} \gg m_{Q}^{2}$ have been calculated, including also the logarithmic contributions.
- Various new mathematical and technological steps were performed to prepare the calculation of $(\Delta) A_{Q g}^{(3)}$.
- Recently all elliptic base master integrals necessary to complete the calculation for $(\Delta) A_{Q g}^{(3)}$ were computed analytically.
- We have calculated already all the first-order factorizing contributions to $(\Delta) A_{Q g}^{(3)}$.
- The completion of $(\Delta) A_{Q g}^{(3)}$ is underway and will allow new precision analyses of the world DIS-data to measure $\alpha_{s}\left(M_{z}\right)$ and m_{c} at higher precision.
- In the small x region BFKL approaches fail to present the physical result due to quite a lot of subleading terms, substantially correcting the LO behaviour. The growth of F_{2} at small x is a consequence of the shape of the non-perturbative PDFs and complete fixed order evolution at twist 2.

