Higher Order Corrections to
 Classical Gravity

Humboldt Kolleg, Kitzbühel,A
Johannes Blümlein, DESY | June 27, 2022

DESY
in collaboration with: A. Maier, P. Marquard, and G. Schäfer
(1) Introduction
2) Higher Order Corrections in Classical Gravity

3 Post Newtonian Corrections up to 5 PN corrections
5 PN: the potential corrections
5 PN: 'tail' terms
5 PN : phenomenological results
(4) Test of PM results at 6PN
(5) Conclusions

Introduction

- We consider the inspiraling phase of two massive gravitating objects (black holes and/ or neutron stars) and study their Hamiltonian dynamics.
- On the basis of a Hamilitonian also their scattering can be investigated.
- While the losted order is the Newtonian motion, the 1 PN correction to it shows the motion of the perihelion already.
- With higher oders, the motion becomes structurally more and more complicated.
- Estimates show, that future LISA measurements will require the knowledge of the dynamics at 6 PN.
- Currently the level of 4 PN is fully understood.
- The level of 5 PN is nearly, but not yet completely understood analytically and awaits a very last theoretical clarification.
- The level of 6 PN will need more theoretical efforts in the future.
- Methods developed in QFT can be applied to the classical Einstein-Hilbert Lagrangian to build an effective field theory (EFT) to solve this ambitious problem by Feynman diagram techniques.

Gravitational waves from binary mergers

Gravitational waves from binary mergers

ringdown
inspiral
merger

Gravitational waves from binary mergers

[Buonanno, Damour 1998]

General relativity

General relativity action:

$$
S_{\mathrm{GR}}\left[g^{\mu \nu}\right]=S_{\mathrm{EH}}+S_{\mathrm{GF}}+S_{\text {matter }}
$$

With $\eta^{\mu \nu}=\operatorname{diag}(-1,1,1,1), g=\operatorname{det}\left(g^{\mu \nu}\right)$:

- Einstein-Hilbert action:

$$
S_{\mathrm{EH}}=\frac{1}{16 G \pi} \int d^{d} x \sqrt{-g} R
$$

- Harmonic gauge $\partial_{\mu} \sqrt{-g} g^{\mu \nu}=0$:

$$
S_{\mathrm{GF}}=-\frac{1}{32 G \pi} \int d^{d} x \sqrt{-g} \Gamma_{\mu} \Gamma^{\mu}, \quad \Gamma^{\mu}=g^{\alpha \beta} \Gamma_{\alpha \beta}^{\mu}
$$

- Assume point-like matter, no spin:

$$
S_{\text {matter }}=\sum_{a=1}^{2} m_{a} \int d \tau_{a}
$$

General relativity

$$
\begin{aligned}
S_{\mathrm{GR}}\left[\phi, A_{i}, \sigma_{i j}\right] & =\sum_{a=1}^{2} \int d t\left(m_{a}+\frac{1}{2} m_{a} v_{a}^{2}+\mathcal{O}\left(v^{4}\right)\right) \\
& +\sum_{a=1}^{2} m_{a} \int d t\left(-\phi+v_{a i} A_{i}+v_{a i} v_{a j} \sigma_{i j}-\frac{1}{2} \phi^{2}+\ldots\right) \\
& +\int \frac{d^{d} x}{32 \pi G}\left[-c_{d}\left(\partial_{\mu} \phi\right)^{2}+\left(\partial_{\mu} A_{i}\right)^{2}+\frac{1}{4}\left(\partial_{\mu} \sigma_{i i}\right)^{2}-\frac{1}{2}\left(\partial_{\mu} \sigma_{i j}\right)^{2}+\ldots\right]
\end{aligned}
$$

Higher Order Corrections in Classical Gravity

Topics:

- 5 PN corrections
- Test of the PM results at 6PN
- Study the inspiraling phase of 2 massive objects
- in collaboration with: A. M aier, P. M arquard, G. Schäfer

The topic has been inspired by J. Plefka's talk at QMC in 2018. This has been the time of the 3P N / 4PN static potential corrections using effective field-theory methods (i.e. 4PN incomplete). Foffa et al. [1612.00482]
However, the complete 4 PN corrections were known by using other technologies (ADM), Damour et al. [1401.4548]

Higher Order Corrections in Classical Gravity

- Current Status:
- Post Minkowskian approach:
- G^{4} : Bern et al. [2112.10750], Dlapa et al. [2112.11296]
- potential contributions are checked up to 6PN in Blümlein et al. [2101.08630]
- Blümlein et al. [2003.07145] proofed that the G^{3} terms of Bern et al. [1901.04424] are correct and a hypothesis in Damour [1912.02139] does not apply.
- Many recent research results using the post Minkowskian approach: see the extensive list of Refs. given in Blümlein et al. [2003.07145]

Higher Order Corrections in Classical Gravity

- Current Status:
- Post Newtonian approach:
- 4 PN
- complete: [A lot of groups, working in at least 3 different gauges.] Canonical transformations cf.: Blümlein et al. [2003.01692]
- 5 PN
- partial results Bini et al. [2003.11891] tutti frutti; two constants cannot be determined
- 5 PN potential terms Blümlein et al. [2010.13672] EFT complete
- 5 PN tail terms through multipole expansion Blümlein et al. [2110.13822] EFT (see discussion below)
- Bini et al. [2107.08896]: disagreement of the multipole 'tail' contributions of Foffa et al. [1907.02869] with $\chi_{4} \nu$ constraint.
- 6 PN
- partial results Bini et al. [2007.11239] tutti frutti; various more constants cannot be determined
- However, 5 PN is not yet finished, which would be a conditio sine qua non to understand 6 PN.
- The complete result can only be obtained by a full calculation.

Near-zone potential

Post Newtonian Corrections up to 5 PN

Hamiltonian and Lagrange formalism:
[applicable to the bound state and to the scattering problem]
EFT approach to Einstein gravity, cf. Kol \& Smolkin [0712.4116 [hep-th]].

- 5 PN static potential
- Foffa et al. [1902.10571] by geometric trick
- Blümlein et al. [1902.11180] calculated within EFT ab initio
- The papers were submitted within half a day independently.

$$
\mathcal{L}_{5 \mathrm{PN}}^{S}=-\frac{G_{N}^{6}}{r^{6}} m_{1} m_{2}\left[\frac{5}{16}\left(m_{1}^{5}+m_{2}^{5}\right)+\frac{91}{6} m_{1} m_{2}\left(m_{1}^{3}+m_{2}^{3}\right)+\frac{653}{6} m_{1}^{2} m_{2}^{2}\left(m_{1}+m_{2}\right)\right]
$$

- 4 PN complete by EFT
- ADM Damour et al. [1401.4548]
- harmonic coordinates Blanchet et al. [1610.07934] Foffa \& Sturani [1903.05113] Blümlein et al. [2003.01692]
- EOB Bini et al. [2003.11891]
- isotropic coordinates Bern et al. [2112.10750] and earlier papers

5 PN: the potential corrections

Blümlein et al. [2010.13672]:

- calculation ab initio in harmonic coordinates
- treatment of potential and singular 'tail' terms together in D dimensions: pole cancellation up to a canonical transformation
- pole-free Hamiltonian
- adding the non-local 'tail' terms [agreement with the literature]
- γ_{5}-like treatment of $\varepsilon_{i j k}$ in D dimensions: leading to the correct terms $O(\nu)$; see also the later paper: Foffa et al. [2110.14146]
- obtaining all terms but the rational terms $O\left(\nu^{2}\right)$
- The remaining finite rational $O\left(\nu^{2}\right)$ terms come all from the 'tail'.
- The potential terms have been mulitiply verified (static potential, up to $O\left(G^{4}\right)$ terms by Bern et al.)
- Blümlein et al. [2010.13672] introduced the expansion by regions to classical (EFT) gravity; only potential and ultra-soft modes contribute.

5 PN: the potential corrections

First obtained:

$$
\begin{aligned}
& \bar{d}_{5}^{\pi^{2} \nu^{2}}=\frac{306545}{512} \pi^{2} \nu^{2} \\
& a_{6}^{\pi^{2} \nu^{2}}=\frac{25911}{256} \pi^{2} \nu^{2}
\end{aligned}
$$

\# loops	QGRAF	source irred.	no source loops	no tadpoles	masters
0	3	3	3	3	0
1	72	72	72	72	1
2	3286	3286	3286	2702	1
3	81526	62246	60998	41676	1
4	545812	264354	234934	116498	7
5	332020	128080	101570	27582	4

Table: Numbers of contributing diagrams at the different loop levels and master integrals.

5 PN: ‘tail’ terms

There is no generally agreed field theoretic approach to the non-potential terms yet, but would be utterly needed.
Blümlein et al. [2110.13822]:

- It is assumed at present that all non-potential terms can be obtained from multi-pole insertions in the sense of an EFT approach. Foffa \& Sturani et al. [1903.05113], M archand et al. [2003.13672], Larrouturou et al. [2110.02243,2110.02240]
- Partly different propagator treatment in the literature.
- A consistent description is possible by using the in-in formalism.
- Unfortunately the ν constraint hypothesis Bini et al. [2003.11891] is not met for the finite $O\left(\nu^{2}\right)$ terms.
- closer analysis in the EOB representation.

5 PN: EOB representation

- Our results obtained in harmonic corrdinates can be re-parameterized in EOB form for all local terms.
- The nonlocal terms do already agree between different approaches.

$$
\begin{aligned}
H_{\mathrm{EOB}}^{\text {loc,eff }}= & \sqrt{A\left(1+A D \eta^{2}(p . n)^{2}+\eta^{2}\left(p^{2}-(p . n)^{2}\right)+Q\right)}, \\
A= & 1+\sum_{k=1}^{6} a_{k}(\nu) \eta^{2 k} u^{k}, \quad a_{2}=0, \\
D= & 1+\sum_{k=2}^{5} d_{k}(\nu) \eta^{2 k} u^{k}, \\
Q= & \eta^{4}(p . n)^{4}\left[q_{42}(\nu) \eta^{4} u^{2}+q_{43}(\nu) \eta^{6} u^{3}+q_{44}(\nu) \eta^{8} u^{4}\right]+\eta^{6}(p . n)^{6}\left[q_{62}(\nu) \eta^{4} u^{2}+q_{63}(\nu) \eta^{6} u^{3}\right] \\
& +\eta^{12}(p . n)^{8} u^{2} q_{82}(\nu) .
\end{aligned}
$$

Here $u=1 / r$ and $\eta=1 / c$.

5 PN: EOB representation

$$
\begin{aligned}
\text { 5PN, } u^{2}: q_{82} & =\frac{6}{7} \nu+\frac{18}{7} \nu^{2}+\frac{24}{7} \nu^{3}-6 \nu^{4} \\
u^{3}: q_{63} & =\frac{123}{10} \nu-\frac{69}{5} \nu^{2}+116 \nu^{3}-14 \nu^{4} \\
u^{4}: q_{44} & =\left(\frac{1580641}{3150}-\frac{93031}{1536} \pi^{2}\right) \nu+\left(-\frac{3670222}{4725}+\frac{31633}{512} \pi^{2}\right) \nu^{2}+\left(640-\frac{615}{32} \pi^{2}\right) \nu^{3}, \\
u^{5}: \bar{d}_{5} & =\left(\frac{331054}{175}-\frac{63707}{512} \pi^{2}\right) \nu+\bar{d}_{5}^{\nu^{2}} \nu^{2}+\left(\frac{1069}{3}-\frac{205}{16} \pi^{2}\right) \nu^{3}, \\
u^{6}: a_{6} & =\left(-\frac{1026301}{1575}+\frac{246367}{3072} \pi^{2}\right) \nu+a_{6}^{\nu^{2}} \nu^{2}+4 \nu^{3} .
\end{aligned}
$$

New:

$$
\begin{aligned}
\bar{d}_{5}^{\nu^{2}} & =\left(-\frac{31295104}{4725}+\frac{306545}{512} \pi^{2}\right), \quad a_{6}^{\nu^{2}}=\left(-\frac{1749043}{1575}+\frac{25911}{256} \pi^{2}\right) \\
q_{44}^{\nu^{2}, r} & =-\frac{9367}{15}:
\end{aligned}
$$

Bini et al. [2003.11891] refers to $\chi_{4}^{\text {tot }}$ as we known now.

5 PN: phenomenological results: Binding Energy

Evaluate time integral in E_{n}, e.g. for circular orbit:

$$
\nu=\frac{\mu}{M}, \quad j=\frac{J}{G M}
$$

$$
\begin{aligned}
\frac{E_{\text {loc }}^{\text {circ }}(j)}{\mu}= & -\frac{1}{2 j^{2}}+\left(-\frac{\nu}{8}-\frac{9}{8}\right) \frac{1}{j^{4}}+\left(-\frac{\nu^{2}}{16}+\frac{7 \nu}{16}-\frac{81}{16}\right) \frac{1}{j^{6}}+\left[-\frac{5 \nu^{3}}{128}+\frac{5 \nu^{2}}{64}+\left(\frac{8833}{384}\right.\right. \\
& \left.\left.-\frac{41 \pi^{2}}{64}\right) \nu-\frac{3861}{128}\right] \frac{1}{j^{8}}+\left[-\frac{7 \nu^{4}}{256}+\frac{3 \nu^{3}}{128}+\left(\frac{41 \pi^{2}}{128}-\frac{8875}{768}\right) \nu^{2}+\left(\frac{989911}{3840}\right.\right. \\
& \left.\left.-\frac{6581 \pi^{2}}{1024}\right) \nu-\frac{53703}{256}\right] \frac{1}{j^{10}}+\left[-\frac{21 \nu^{5}}{1024}+\frac{5 \nu^{4}}{1024}+\left(\frac{41 \pi^{2}}{512}-\frac{3769}{3072}\right) \nu^{3}\right. \\
& \left.\left(-\frac{400240439}{403200}+\frac{132979 \pi^{2}}{2048}\right) \nu^{2}+\left(\frac{3747183493}{1612800}-\frac{31547 \pi^{2}}{1536}\right) \nu-\frac{1648269}{1024}\right] \frac{1}{j^{12}}+\mathcal{O}\left(\frac{1}{j^{14}}\right) \\
\frac{E_{\mathrm{n}}^{\mathrm{circ}}}{\mu}= & \nu\left\{\left[-\frac{64}{5}\left(\ln (j)-\gamma_{E}\right)+\frac{128}{5} \ln (2)\right] \frac{1}{j^{10}}+\left[\frac{32}{5}+\frac{28484}{105} \ln (2)+\frac{243}{14} \ln (3)-\frac{15172}{105}\left(\ln (j)-\gamma_{E}\right)\right.\right. \\
+ & \left.\left.\nu\left(\frac{32}{5}+\frac{112}{5}\left(\ln (j)-\gamma_{E}\right)+\frac{912}{35} \ln (2)-\frac{486}{7} \ln (3)\right)\right] \frac{1}{j^{12}}+\mathcal{O}\left(\frac{1}{j^{14}}\right)\right\}
\end{aligned}
$$

5 PN: phenomenological results

5 PN: phenomenological results: Periastron advance in the circular limit

$$
\begin{aligned}
K_{\mathrm{loc}}^{\text {circ }}(j)= & 1+3 \frac{1}{j^{2}}+\left(\frac{45}{2}-6 \nu\right) \frac{1}{j^{4}}+\left[\frac{405}{2}+\left(-202+\frac{123}{32} \pi^{2}\right) \nu+3 \nu^{2}\right] \frac{1}{j^{6}} \\
& +\left[\frac{15795}{8}+\left(\frac{185767}{3072} \pi^{2}-\frac{105991}{36}\right) \nu+\left(-\frac{41}{4} \pi^{2}+\frac{2479}{6}\right) \nu^{2}\right] \frac{1}{j^{8}}+\left[\frac{161109}{8}\right. \\
& \left.+\left(-\frac{18144676}{525}+\frac{488373}{2048} \pi^{2}\right) \nu-\left(\frac{105496222}{4725}+\frac{1379075}{1024} \pi^{2}\right) \nu^{2}+\left(-\frac{1627}{6}+\frac{205}{32} \pi^{2}\right) \nu^{3}\right] \frac{1}{j^{10}}+O\left(\frac{1}{j^{12}}\right) \\
K_{\mathrm{nl}}^{\operatorname{circ}}(j)= & -\frac{64}{10} \nu\left\{\frac{1}{j^{8}}\left[-11-\frac{157}{6}\left(\ln (j)-\gamma_{E}\right)+\frac{37}{6} \ln (2)+\frac{729}{16} \ln (3)\right]\right. \\
& +\frac{1}{j^{10}}\left[-\frac{59723}{336}-\frac{9421}{28}\left[\ln (j)-\gamma_{E}\right]+\frac{7605}{28} \ln (2)+\frac{112995}{224} \ln (3)\right. \\
& \left.+\left(\frac{2227}{42}+\frac{617}{6}\left[\ln (j)-\gamma_{E}\right]-\frac{7105}{6} \ln (2)+\frac{54675}{112} \ln (3)\right) \nu\right]+O\left(\frac{1}{j^{12}}\right)
\end{aligned}
$$

5 PN: phenomenological results

A numerical remark on the scattering angle: K halil et al. [2204.05047]
The usual scattering angle takes values of ~ 120 degrees and larger. The remaining numerical difference is of the order of 10^{-3} degrees for velocities $<1 / 2$.
Yet it has to be clarified.

Test of PM results at 6PN

- We have calculated the 6 PN contributions up to G^{4} in Blümlein et al. [2003.07145], [2101.08630]
- This confirmed

$$
C_{B}=\frac{2}{3} \gamma\left(14 \gamma^{2}+25\right)+4\left(4 \gamma^{4}-12 \gamma^{2}-3\right) \frac{a s(\gamma)}{\sqrt{\gamma^{2}-1}}
$$

from Bern et al. [1901.04424]

- and ruled out

$$
C_{c}=\gamma\left(35+26 \gamma^{2}\right)-\left(18+96 \gamma^{2}\right) \frac{a s(\gamma)}{\sqrt{\gamma^{2}-1}}
$$

from Damour [1912.02139v1]

- The results also agree with Bini et al. [2004.05407] Here

$$
\operatorname{as}(\gamma)=\operatorname{arcsinh}(\sqrt{(\gamma-1) / 2}), \gamma=\sqrt{\left.p_{\infty}^{2}+1\right)}
$$

and C_{i} contributes to $\chi_{3}(\gamma, \nu)$.

The 'conservative' scattering angle

- Since summer 2021 one has to distinguish between the complete scattering angle and the conservative scattering angle starting at $1 / j^{4}$ and $5 P N$.
- The calculation by Bern et al. is dynamically conservative
- The ν-scaling for $\chi\left(j, \nu, p_{\infty}\right)$ observed by Damour implies to redefine χ to its conservative part.

$$
\begin{aligned}
\frac{1}{\pi \nu}\left[\tilde{\chi}_{4}^{\text {tot,cons }}-\chi_{4}^{\text {Schw }}\right]= & -\frac{15}{4}+p_{\infty}^{2}\left(-\frac{557}{16}+\frac{123}{256} \pi^{2}\right)+p_{\infty}^{4}\left(-\frac{6113}{96}-\frac{37}{5} \ln \left(\frac{p_{\infty}}{2}\right)+\frac{33601}{16384} \pi^{2}\right) \\
& +p_{\infty}^{6}\left(-\frac{615581}{19200}-\frac{1357}{280} \ln \left(\frac{p_{\infty}}{2}\right)+\frac{93031}{32768} \pi^{2}\right)+O\left(p_{\infty}^{8}\right) .
\end{aligned}
$$

- χ and $\chi^{\text {cons }}$ are different quantities.
- The recent results of Bern et al. refer to $\chi^{\text {cons. }}$. The EOB parameters have been derived from χ, on the other hand.

Conclusions

- Significant progress has been made in applying EFT methods to classical gravity during the last three years.
- Both in the post-Newtonian and the post-M inkowskian approach methods from QFT provide the only way to solve this problem to the experimental accuracy needed.
- The level of 5 PN is nearly completed and the remaing problems are expected to be solved soon, which will provide corresponding analytic expressions for the dynamics in the inspiraling phase.
- Currently the 4 PM, i.e. $O\left(G^{4} / r^{4}\right)$ level, is reached in the post-M inkowskian and people work the next level for the scattering angle.
- The EOB approach allows to combine the results from both approaches in the case of the scattering process.
- The tail terms are different for the bound state and scattering problems.

