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Introduction

One goal in analyzing polarized deep-inelastic data is the measurement
of the valence quark distributions and of the strong coupling αs(M2

Z ).

αs(M2
Z ) can be accessed also using the Bjorken sum rule. This would be

the ‘integral’ method.

A more advantageous approach consists in the ‘differential’ method, i.e.
measuring the flavor non-singlet contributions to g1(x ,Q2) and
extracting αs(M2

Z ) using non-singlet scale evolution.

In the following we discuss the theoretical background for this possibility
covering the different contributions.

Recently the complete O(α2
s) heavy flavor corrections have been

calculated and the massless corrections are available effectively at
N3LO.

A comprehensive world data analysis reaching this level has not been
performed yet and would be rather timely.

We expect an experimental error for αs(M2
Z ) ∼ ±0.0050 or better

with a remaining very small theory error.
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The Data and their Scaling Violations
Non-singlet combinations can be formed experimentally.

gd
1 (x ,Q2)

1
2 (1− 3

2ωD)
= gp

1 (x ,Q2) + gn
1 (x ,Q2)

consider: ∆g1(x ,Q2) = gp
1 (x ,Q2)− gn

1 (x ,Q2)

At LO:

∆gNS,LO
1 (x ,Q2) =

1
3

[∆uv −∆dv ] +
2
3
[
∆ū −∆d̄

]
The difference of the sea-quark densities does not necessarily vanish.

At HO [in Mellin space]:

∆gNS
1 (N,Q2) =

[
1 +

3∑
l=1

al
sCNS,(l)

g1
(N)

]
ENS(N,Q2,Q2

0)∆gNS,LO
1 (x ,Q2

0)

as = αs/(4π), CNS,(l)
g1

- Wilson coefficients
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NLO pdfs
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NS Parton Evolution

f NS(N,Q2) = f NS(N,Q2
0)

(
a
a0

)−P̂0(N)/β0
{

1−
1
β0

(a− a0)

[
P̂−

1 (N)−
β1

β0
P̂0(N)

]

−
1

2β0

(
a2 − a2

0

)[
P̂−

2 (N)−
β1

β0
P̂−

1 (N) +

(
β2

1

β2
0
−
β2

β0

)
P̂0(N)

]

+
1

2β2
0
(a− a0)

2
(

P̂−
1 (N)−

β1

β0
P̂0(N)

)2

−
1

3β0

(
a3 − a3

0

)[
P̂−

3 (N)−
β1

β0
P̂−

2 (N) +

(
β2

1

β2
0
−
β2

β0

)
P̂−

1 (N)

+

(
β3

1

β3
0
− 2

β1β2

β2
0

+
β3

β0

)
P̂0(N)

]
+

1
2β2

0
(a− a0)

(
a2

0 − a2
)

×
(

P̂−
1 (N)−

β1

β0
P̂0(N)

)[
P̂−

2 (N)−
β1

β0
P̂−

1 (N)−
(
β2

1

β2
0
−
β2

β0

)
P̂0(N)

]

−
1

6β3
0
(a− a0)

3
(

P̂−
1 (N)−

β1

β0
P̂0(N)

)3
}
.

f NS(1,Q2) = f NS(1,Q2
0), P̂k (1) = 0, ∀k , No evolution of the first moment!
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NS Parton Evolution

f NS(N,Q2) = ENS(N,Q2,Q2
0)f NS(N,Q2

0)

• The NS evolution can be performed to 4-loop order.
• Although only a few moments are available for the splitting function, a Padè
model works well, and one may associate a ±100% error to it. It’s impact is
far below possible foreseeable accuracies for αs(M2

Z ).
• The essential corrections come form the Wilson coefficients.
• Massless case: 3 Loop Order Vermaseren et al. 2005

• Massive case: 2 Loop Order Blümlein et al. 2015
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Higher Twist
Important to determine within a correlated fit.
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No possibility to remove these effects by cuts, given the present
World data.
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The Target Mass Corrections

Mandatory corrections to be carried out. A. Piccione and G. Ridolfi, Nucl.Phys. B513 (1998) 301;

J. Blümlein and A. Tkabladze, Nucl. Phys. B443 (1999) 427.
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The Advantage of the Differential Method

Data points have not to be moved, but are fitted in situ.

No real extrapolation assumptions, in particular not at small x .

The analysis can be carried out to N3LO for the massless corrections.

In case of the massive corrections the exact O(α2
s) corrections are

available.
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The Bjorken Sum Rule: the Integral Method

J.D. Bjorken, Phys. Rev. D 1 (1970) 1376∫ 1

0
dx
[
gep

1 (x ,Q2)− gen
1 (x ,Q2)

]
=

1
6

∣∣∣∣ gA

gV

∣∣∣∣CpBJ(âs),

with gA,V the neutron decay constants, gA/gV ≈ −1.2767± 0.0016 and
âs = αs/π.
Massless case:

CpBJ(âs) = 1 +
4∑

k=1

âk
s Ck (NF ) .

1-loop J. Kodaira, S. Matsuda, T. Muta, K. Sasaki and T. Uematsu, Phys. Rev. D 20 (1979) 627
2-loop S.G. Gorishnii and S.A. Larin, Phys. Lett. B 172 (1986) 109
3-loop S.A. Larin and J.A.M. Vermaseren, Phys. Lett. B 259 (1991) 345
4-loop NS P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Phys. Rev. Lett. 104 (2010) 132004
4-loop SI P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Nucl. Part. Phys. Proc. 261-262 (2015) 3; S.A. Larin, Phys. Lett. B 723 (2013) 348
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The Bjorken Sum Rule

SU(3) non-singlet contributions:

CNS
pBJ = 1− âs + â2

s

[
−55

12
+

NF

3

]
+â3

s

[
55ζ5

2
− 44ζ3

9
− 13841

216
+ NF

(
61ζ(3)

54
− 5ζ5

3
+

10339
1296

)

−N2
F

115
648

]
+ â4

s

[
−2695ζ7

16
+

343175ζ5

864
− 363ζ2

3

8
+

8213ζ3

48

−17865665
20736

+ NF

(
−32743ζ3

2592
+

11ζ2
3

2
− 53215ζ5

1296
+

245ζ7

24

+
10134475

62208

)
+ N2

F

(103ζ3

432
− ζ2

3

6
+

5ζ5

12
− 169523

20736

)
+ N3

F
605
5832

]
= 1− âs + â2

s(−4.5833 + 0.3333NF )

+â3
s(−41.4399 + 7.6073NF − 0.1775N2

F )

+â4
s(−479.4475 + 123.3914NF − 7.6975N2

F + 0.1037N3
F )
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The Bjorken Sum Rule

SU(3) singlet contributions:

CS
pBJ = â4

s
10
9

(
11− 2

3
NF

) NF∑
q=1

eq

= 0 NF = 3

= a4
s

500
81

= a4
s6.173, NF = 4

= a4
s

230
81

= a4
s2.938, NF = 5
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The Bjorken Sum Rule
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The Bjorken Sum Rule
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The Bjorken Sum Rule

Massive Contributions
Switching on heavy flavors: from threshold to asymptotia
1) There are no logarithmic contributions ∝ lnk (Q2/m2), due to

fermion-number conservation in the inclusive non-singlet case.
2) Only power corrections ∝ (m2/Q2)l will contribute.

These corrections start with O(α2
s).

3) Down to which scale are hard corrections are perturbatively reliable?
=⇒ Q2 >

∼ 4 GeV2.

∫ 1

0
dx
[
gep

1 (x ,Q2)− gen
1 (x ,Q2)

]
=

1
6

∣∣∣∣ gA

gV

∣∣∣∣CpBJ(âs),
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The Bjorken Sum Rule: O(α2
s) HQ contributions

Cmassive,(2)
pBJ = 3CF TF

{
6ξ2 + 2735ξ + 11724

5040ξ
−
√
ξ + 4
ξ3/2

(
3ξ3 + 106ξ2 + 1054ξ + 4812

)
5040

× ln


√

1 + 4
ξ
+ 1√

1 + 4
ξ
− 1

− 1
ξ2

5
12

ln2


√

1 + 4
ξ
+ 1√

1 + 4
ξ
− 1


+

(
3ξ2 + 112ξ + 1260

)
5040

ln(ξ)

}
,

with ξ = Q2/m2. In the asymptotic region ξ � 1, Cmassive,(2)
pBJ behaves like

Cmassive,(2)
pBJ ∝ 3CF TF

{
1
2
−

5
12ξ2

ln2(ξ)−
4
3ξ

ln(ξ) +
17
9ξ

+ O
(

ln(ξ)
ξ2

)}
.

Valid to about Q2 ' m2
c .
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The Bjorken Sum Rule: O(α2
s) HQ contributions
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The Bjorken Sum Rule

Higher Twist Corrections

Only vaguely known; not very reliable theoretical predictions yet

cHT ≈ −0.025...+ 0.03GeV2

I.I. Balitsky, V.M. Braun, A.V. Kolesnichenko Phys. Lett B242 (1990) 245; E: B318 (1993) 648; X. Ji, P. Unrau, Phys. Lett. B333

(1994) 228; B. Lampe and E. Reya, Phys. Rep. 332 (2000) 1.

Better determine it by fitting.

Target Mass Corrections

To be applied, cf. J. Blümlein and A. Tkabladze, Nucl. Phys. B443 (1999) 427 for the moments.
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The Status of αs(M2
Z ): polarized case

Till now only NLO analyses, however, accounting for charm at LO: JB and H.

Böttcher Nucl. Phys. B841 (2010) 205

αs(M2
Z ) = 0.1132+0.0043

−0.0051 EXP +0.0029
−0.0015 FS +0.0032

−0.0075 RS

The higher order corrections will remove a significant part of the
factorization and renormalization scale uncertainty.

Yet an experimental error of ∼ ±0.005 will remain.

This is still a very interesting measurement. The next real leap forward
can be made at the EIC, if it will be built.
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Conclusions

The polarized DIS data on g1(x ,Q2) can be used to project a
non-singlet combination.

The measurement of αs(M2
Z ) at leading twist is currently possible

including the 3-loop massless and 2-loop massive Wilson coefficients,
using the differential method.

Higher twist and target mass effects have to be accounted for. The
former need to be fitted from the data.

Using the above method the theory errors can be widely reduced.

The current experimental error is expected to be ±0.0050. It will be
interesting to see, which central value is going to be obtained.
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