Analysis Center: the PDF Working Group

Johannes Blümlein DESY

- Mission
- Cooperation between Theory & Experiment
- Schools & Workshops
- Some Results
- Work plans for the next time

Annual Meeting of the Helmholtz Alliance: Physics at the Tera-Scale, Hamburg, November 12th 2009

Mission

 \bullet provides training on all aspects concerning pdfs and inclusive hard scattering processes in ep and pp reactions

- supports the final analyses of HERA data w.r.t. to the extraction of pdfs
- coordinates comparisons of different pdf analyses to refine the understanding of pdfs and their errors, including $\alpha_s(M_Z^2)$
- \bullet provides further theoretical calculations needed to improve ongoing ep and pp analyses
- will provide a platform to analyze inclusive hard scattering data at the LHC (DY, $t\bar{t}$, Higgs-production) to refine the understanding of the pdfs
- \bullet will provide an open-source code for NNLO structure function and pp inclusive hard scattering process analyses to extract pdfs

Members & Cooperation

- Coordination: J. Blümlein, S.-O. Moch, DESY, Z, A. Glazov, DESY, HH
- Partners (that far):
 - A. Guffanti, U. Freiburg
- Heavy Flavor, DIS
- pdf comparisons

NNPDF

- 4-loop analyses
- systematics studies
- code development

- A. Geiser, K. Lipka, DESY, S. Klein, RWTH Aachen
- E. Reya et al. TU Dortmund
- K. Chetyrkin, J.H. Kühn, KIT
- V. Radescu, U. Heidelberg
 - H. Böttcher, DESY, S. Alekhin, DESY & IHEP
- External Partners: hard processes comp. code development
 - P. Jimenez-Delgado, U. Zürich
 - nt A. Vogt et al., TP, U. Liverpool
- all interested partners are invited to join the work.

Cooperation between Theory and Experiment

- finalize the HERA data: H1+ZEUS and extract the most precise results possible; inclusive DIS data, heavy flavor data
- recent and ongoing NNLO Heavy Flavor Calculations
- Code Comparisons for evolution codes and hard scattering cross sections at HERA and the LHC
- longer term: computation of the NNLO ep jet cross sections
- Mutual comparisons of global analyses started \implies thoroughly understood pdfs for the LHC
- Started: development of Open Source Code for NNLO Evolution and hard processes in ep and pp: fast Mellin-space technology

Cooperation between Theory & Experiment

- \implies Theory tools need to be quickly transferred to experiment
- $\bullet \implies$ Close contacts and collaboration T+E on analysis issues required
- \implies Incorporate newly calculated 3-loop heavy flavor corrections into data analysis of $F_2(x, Q^2)$

• \implies Apply newly calculated 3-loop heavy flavor corrections in ongoing data analyses of $F_2^{c\overline{c}}(x, Q^2)$ and $F_2^{b\overline{b}}(x, Q^2)$ at H1 and ZEUS

• \implies With the advent of LHC data : systematic study of light candle processes as Drell-Yan, W/Z-production ... to unravel the different sea quark distributions.

• Final Goal : High precision pdfs and value of $\alpha_s(M_Z^2)$ for LHC.

Schools & Workshops

- PDF-school, Nov. 2008 J.B., A. Glazov, S.O. Moch
- PDF-school, Oct. 2009 J.B., A. Glazov, S.O. Moch, T. Schoerner-Sadenius
- In preparation : **PDF-school**, Oct. 2010; working meeting pdf group + MC group Feiburg/Br. 2010
- Bi-annually since 1992 : Loops and Legs in Quantum Field Theory; next workshop: April 2010, J.B., S.O. Moch, T. Riemann
 a central meeting to discuss all new theoretical activities in Terascale-physics

Development of Open Source Fitting Code

- 2 year project; so far: 1 yr funding for exp. scientist (S. Alekhin)
- other phenomenology groups joined

Combined Fits: H1 + ZEUS

New ZEUS + H1 averaged $F_2(x, Q^2)$

Flavor distributions: light quarks (NNLO)

Current Fitting Community (NNLO): ABMK, JR, A, MSTW

+ Many NLO analyses worldwide: CTEQ, NNPDF, H1, ZEUS, ...

S. Alekhin, J.B., S. Klein, S. Moch, DESY 09-102; Correct treatment of HQ very essential: FFNS, BSMN-schemes.; full lines: ABKM error band; dashed lines: MSTW08

Heavy quarks and gluon (NNLO)

S. Alekhin, J.B., S. Klein, S. Moch, DESY 09-102

full lines: ABKM error band; dashed lines: MSTW08

comparison: ABKM (2009) vs. Jimenez-Delgado/ Reya (2008)

Study of shape uncertainty

= 4. GeV

Improved Threshold Resummation: DIS $c\overline{c}$

- S. Alekhin, S.-O. Moch (2008)
- implementation of large Q^2 NNLO effects upcoming; J.B., S. Klein

Polarized DIS

- polarized world data analysis J.B., H. Böttcher
- 3-loop analysis: anomalous dimensions + massless WC Moch, Vermaseren, Vogt, upcoming
- 3-loop analysis: HQ WC's J.B. et al., upcoming

Some Predictions for Tevatron and the LHC

ABKM (2009)

$t\overline{t}$ Cross Section in $pp(\overline{p})$ scattering at (NNLO)

\sqrt{s} (TeV)	this paper	MSTW2008
$1.96 \ (\bar{p}p)$	6.91 ± 0.17	7.04
7 (pp)	131.3 ± 7.5	160.5
10 (pp)	343 ± 15	403
14 (pp)	780 ± 28	887

ABKM (2009) vs MSTW08

• Yet significant differences.

Higgs Cross Section in $pp(\overline{p})$ scattering at (NNLO)

bands: ABKM (2009); lines: MSTW08
LHC has a great potential to limit the gluon distribution.

$$\frac{\delta \alpha_s(M_Z^2)}{\alpha_s(M_Z^2)} \simeq 1.2\%$$

	$lpha_s({ m M_Z^2})$	
ABKM	0.1135 ± 0.0014	HQ: FFS $N_f = 3$
ABKM	0.1129 ± 0.0014	HQ: BSMN-approach
BBG (2006)	$0.1134\begin{array}{c}+0.0019\\-0.0021\end{array}$	valence analysis, NNLO
JR (2008)	0.1124 ± 0.0020	dynamical approach
MSTW (2008)	0.1171 ± 0.0014	
BBG (2006)	$0.1141 \begin{array}{c} +0.0020 \\ -0.0022 \end{array}$	valence analysis, N ³ LO

$$\frac{\delta \alpha_s(M_Z^2)}{\alpha_s(M_Z^2)} \simeq 1.2\%$$

	$lpha_s({ m M_Z^2})$	
ABKM	0.1135 ± 0.0014	HQ: FFS $N_f = 3$
A.Hoang et al.	0.1135 ± 0.0013	e^+e^- thrust
ABKM	0.1129 ± 0.0014	HQ: BSMN-approach
BBG (2006)	$0.1134\begin{array}{c}+0.0019\\-0.0021\end{array}$	valence analysis, NNLO
JR (2008)	0.1124 ± 0.0020	dynamical approach
MSTW (2008)	0.1171 ± 0.0014	
BBG (2006)	$0.1141 \begin{array}{c} +0.0020 \\ -0.0022 \end{array}$	valence analysis, N ³ LO

 \implies Stay tuned.

Work Plans for the Next Time

• NNLO analysis of the DIS world data including the combined H1+ZEUS data; special investigation of gluon-sensitive observables

- Provide controlled NLO Data sets for LHC process simulations including correct HQ effects
- Implementation of the NNLO Heavy Flavor Effects
- Detailed Code Comparisons between NNLO global fitters
- Development of the fast Open Source Evolution Code
- The PDF-WG invites all interested Experimental and Theory Teams to join in the vast work to be done at the different construction places.